Do thermal requirements of Dichrorampha odorata, a shoot-boring moth for the biological control of Chromolaena odorata, explain its failure to establish in South Africa?
- Nqayi, Slindile B, Zachariades, Costas, Coetzee, Julie A, Hill, Martin P, Chidawanyika, Frank, Uyi, Osariyekemwen O, McConnachie, Andrew J
- Authors: Nqayi, Slindile B , Zachariades, Costas , Coetzee, Julie A , Hill, Martin P , Chidawanyika, Frank , Uyi, Osariyekemwen O , McConnachie, Andrew J
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416851 , vital:71391 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a14"
- Description: Chromolaena odorata (L.) RM King and H Rob. (Asteraceae) has been subject to a biological control programme in South Africa for over three decades. A shoot-tip boring moth, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), originating from Jamaica, was released as a biological control agent in 2013 but despite the release of substantial numbers of the insect, it has not established a permanent field population. Because climate incompatibility is a major constraint for classical biological control of invasive plants, and based on the differences in climate between Jamaica and South Africa and field observations at release sites, aspects of the thermal physiology of D. odorata were investigated to elucidate reasons for its failure to establish. Developmental time decreased with increasing temperatures ranging from 20 °C to 30 °C, with incomplete development for immature stages at 18 °C and 32 °C. The developmental threshold, t, was calculated as 8.45 °C with 872.4 degree-days required to complete development (K). A maximum of 6.5 generations per year was projected for D. odorata in South Africa, with the heavily infested eastern region of the country being the most eco-climatically suitable for establishment. The lower lethal temperature (LLT50) of larvae and adults was –4.5 and 1.8 °C, respectively. The upper lethal temperature (ULT50) for larvae was 39.6 °C whilst that of adults was 41.0 °C. Larvae thus had better cold tolerance compared to adults whereas adults had better heat tolerance compared to larvae. The critical thermal (CT) limits for adults were 3.4 ± 0.07 to 43.7 ± 0.12 °C. Acclimation at 20 °C for 7 days resulted in increased cold and heat tolerance with a CTmin and CTmax of 1.9 ± 0.06 and 44.4 ± 0.07 °C respectively, compared to the relative control, acclimated at 25 °C. Acclimation at 30 °C improved neither cold (CTmin: 5.9 ± 0.08 °C) nor heat tolerance (CTmax: 42.9 ± 0.10 °C). These results suggest that thermal requirements fall within field temperatures and are thus not the main constraining factor leading to poor establishment of D. odorata in South Africa.
- Full Text:
- Date Issued: 2023
- Authors: Nqayi, Slindile B , Zachariades, Costas , Coetzee, Julie A , Hill, Martin P , Chidawanyika, Frank , Uyi, Osariyekemwen O , McConnachie, Andrew J
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416851 , vital:71391 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a14"
- Description: Chromolaena odorata (L.) RM King and H Rob. (Asteraceae) has been subject to a biological control programme in South Africa for over three decades. A shoot-tip boring moth, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), originating from Jamaica, was released as a biological control agent in 2013 but despite the release of substantial numbers of the insect, it has not established a permanent field population. Because climate incompatibility is a major constraint for classical biological control of invasive plants, and based on the differences in climate between Jamaica and South Africa and field observations at release sites, aspects of the thermal physiology of D. odorata were investigated to elucidate reasons for its failure to establish. Developmental time decreased with increasing temperatures ranging from 20 °C to 30 °C, with incomplete development for immature stages at 18 °C and 32 °C. The developmental threshold, t, was calculated as 8.45 °C with 872.4 degree-days required to complete development (K). A maximum of 6.5 generations per year was projected for D. odorata in South Africa, with the heavily infested eastern region of the country being the most eco-climatically suitable for establishment. The lower lethal temperature (LLT50) of larvae and adults was –4.5 and 1.8 °C, respectively. The upper lethal temperature (ULT50) for larvae was 39.6 °C whilst that of adults was 41.0 °C. Larvae thus had better cold tolerance compared to adults whereas adults had better heat tolerance compared to larvae. The critical thermal (CT) limits for adults were 3.4 ± 0.07 to 43.7 ± 0.12 °C. Acclimation at 20 °C for 7 days resulted in increased cold and heat tolerance with a CTmin and CTmax of 1.9 ± 0.06 and 44.4 ± 0.07 °C respectively, compared to the relative control, acclimated at 25 °C. Acclimation at 30 °C improved neither cold (CTmin: 5.9 ± 0.08 °C) nor heat tolerance (CTmax: 42.9 ± 0.10 °C). These results suggest that thermal requirements fall within field temperatures and are thus not the main constraining factor leading to poor establishment of D. odorata in South Africa.
- Full Text:
- Date Issued: 2023
A decade of biological control of Parthenium hysterophorus L.(Asteraceae) in South Africa reviewed: introduction of insect agents and their status
- Strathie, L W, Cowie, Blair W, McConnachie, Andrew J, Chidawanyika, Frank, Musedeli, Jufter N, Sambo, SMC, Magoso, EX, Gareeb, M
- Authors: Strathie, L W , Cowie, Blair W , McConnachie, Andrew J , Chidawanyika, Frank , Musedeli, Jufter N , Sambo, SMC , Magoso, EX , Gareeb, M
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416795 , vital:71386 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a11"
- Description: The annual herb, Parthenium hysterophorus L. (Asteraceae: Heliantheae) is a severe terrestrial invader globally. Infestations reduce crop yield, limit available grazing, hinder conservation efforts, and affect human and animal health in Africa, Asia and Australia, and on associated islands. Due to the impact and threat of further invasion of P. hysterophorus, a biological control (biocontrol) programme was initiated in 2003 in South Africa. This review discusses the research and implementation activities undertaken on the insect agents from 2011 to 2020. During this period, the stem-boring weevil Listronotus setosipennis Hustache (Coleoptera: Curculionidae), leaf-feeding beetle Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae) and seed-feeding weevil Smicronyx lutulentus Dietz (Coleoptera: Curculionidae), were found to be host specific and approved for release. Releases of mass-reared insect agents have been concentrated particularly in north-eastern South Africa, where P. hysterophorus infestations are most prolific. Post-release monitoring studies indicated localised establishment and impact of L. setosipennis and S. lutulentus. Listronotus setosipennis persisted through severe drought conditions, and although it disperses slowly, larval feeding is structurally damaging. Establishment of S. lutulentus is improving, reducing seed production where it is established. Zygogramma bicolorata resulted in defoliation at a few sites, but establishment has been poor and the beetle has been absent since 2019. Although a combination of fungal and insect agents were demonstrated to reduce P. hysterophorus, additional natural enemies could improve control. Consequently, the stem-galling moth Epiblema strenuana Walker (Lepidoptera: Tortricidae) and root-crown boring moth Carmenta sp. nr. ithacae (Beutenmüller) (Lepidoptera: Sesiidae) remain under evaluation. The management of P. hysterophorus in South Africa has been guided by the development of a national strategy, which incorporates multiple management methods, including biocontrol. International collaborations have intensified as a growing number of countries begin to utilize biocontrol to manage P. hysterophorus. Despite the progress towards biocontrol of P. hysterophorus during this period, increased utilisation of approved agents and the introduction of additional agents are necessary to achieve greater control.
- Full Text:
- Date Issued: 2021
- Authors: Strathie, L W , Cowie, Blair W , McConnachie, Andrew J , Chidawanyika, Frank , Musedeli, Jufter N , Sambo, SMC , Magoso, EX , Gareeb, M
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416795 , vital:71386 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a11"
- Description: The annual herb, Parthenium hysterophorus L. (Asteraceae: Heliantheae) is a severe terrestrial invader globally. Infestations reduce crop yield, limit available grazing, hinder conservation efforts, and affect human and animal health in Africa, Asia and Australia, and on associated islands. Due to the impact and threat of further invasion of P. hysterophorus, a biological control (biocontrol) programme was initiated in 2003 in South Africa. This review discusses the research and implementation activities undertaken on the insect agents from 2011 to 2020. During this period, the stem-boring weevil Listronotus setosipennis Hustache (Coleoptera: Curculionidae), leaf-feeding beetle Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae) and seed-feeding weevil Smicronyx lutulentus Dietz (Coleoptera: Curculionidae), were found to be host specific and approved for release. Releases of mass-reared insect agents have been concentrated particularly in north-eastern South Africa, where P. hysterophorus infestations are most prolific. Post-release monitoring studies indicated localised establishment and impact of L. setosipennis and S. lutulentus. Listronotus setosipennis persisted through severe drought conditions, and although it disperses slowly, larval feeding is structurally damaging. Establishment of S. lutulentus is improving, reducing seed production where it is established. Zygogramma bicolorata resulted in defoliation at a few sites, but establishment has been poor and the beetle has been absent since 2019. Although a combination of fungal and insect agents were demonstrated to reduce P. hysterophorus, additional natural enemies could improve control. Consequently, the stem-galling moth Epiblema strenuana Walker (Lepidoptera: Tortricidae) and root-crown boring moth Carmenta sp. nr. ithacae (Beutenmüller) (Lepidoptera: Sesiidae) remain under evaluation. The management of P. hysterophorus in South Africa has been guided by the development of a national strategy, which incorporates multiple management methods, including biocontrol. International collaborations have intensified as a growing number of countries begin to utilize biocontrol to manage P. hysterophorus. Despite the progress towards biocontrol of P. hysterophorus during this period, increased utilisation of approved agents and the introduction of additional agents are necessary to achieve greater control.
- Full Text:
- Date Issued: 2021
Three new biological control programmes for South Africa: Brazilian pepper, Tamarix and Tradescantia
- Byrne, Marcus J, Mayonde, Samalesu, Venter, Nic, Chidawanyika, Frank, Zachariades, Costas, Martin, Grant D
- Authors: Byrne, Marcus J , Mayonde, Samalesu , Venter, Nic , Chidawanyika, Frank , Zachariades, Costas , Martin, Grant D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414490 , vital:71152 , xlink:href="https://hdl.handle.net/10520/ejc-cristal-v10-n1-a7"
- Description: Three weed biological control (biocontrol) programmes are described, all of which are considered to be ‘transfer projects’ that were initiated elsewhere, and on which South Africa has piggybacked its biocontrol efforts. Using knowledge and expertise from international collaborators, South African weed researchers are following a long tradition of transfer projects, which has been a largely successful and practical approach to biocontrol. Two Brazilian weeds, the Brazilian pepper tree Schinus terebinthifolia and the spiderwort Tradescantia fluminensis are being targeted, along with the Old-World trees Tamarix ramosissima and T. chinensis. The potential biocontrol agents are described and ranked for the two trees according to what has been discovered elsewhere, while the agent already released against T. fluminensis is rated (as poor), and other potential agents are considered. The addition of molecular techniques, climate matching and remote sensing in transfer projects can increase the chance of successful biocontrol and the inclusion of these techniques in the three new programmes is discussed. Transfer projects are a cost-effective and pragmatic way to pick winning biocontrol programmes.
- Full Text:
- Date Issued: 2021
Three new biological control programmes for South Africa: Brazilian pepper, Tamarix and Tradescantia
- Authors: Byrne, Marcus J , Mayonde, Samalesu , Venter, Nic , Chidawanyika, Frank , Zachariades, Costas , Martin, Grant D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414490 , vital:71152 , xlink:href="https://hdl.handle.net/10520/ejc-cristal-v10-n1-a7"
- Description: Three weed biological control (biocontrol) programmes are described, all of which are considered to be ‘transfer projects’ that were initiated elsewhere, and on which South Africa has piggybacked its biocontrol efforts. Using knowledge and expertise from international collaborators, South African weed researchers are following a long tradition of transfer projects, which has been a largely successful and practical approach to biocontrol. Two Brazilian weeds, the Brazilian pepper tree Schinus terebinthifolia and the spiderwort Tradescantia fluminensis are being targeted, along with the Old-World trees Tamarix ramosissima and T. chinensis. The potential biocontrol agents are described and ranked for the two trees according to what has been discovered elsewhere, while the agent already released against T. fluminensis is rated (as poor), and other potential agents are considered. The addition of molecular techniques, climate matching and remote sensing in transfer projects can increase the chance of successful biocontrol and the inclusion of these techniques in the three new programmes is discussed. Transfer projects are a cost-effective and pragmatic way to pick winning biocontrol programmes.
- Full Text:
- Date Issued: 2021
- «
- ‹
- 1
- ›
- »