Early Plant Disease Detection using Infrared and Mobile Photographs in Natural Environment
- De Silva, Malitha, Brown, Dane L
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/464085 , vital:76474 , xlink:href="https://link.springer.com/chapter/10.1007/978-3-031-37717-4_21"
- Description: Plant disease identification is a critical aspect of plant health management. Identifying plant diseases is challenging since they manifest themselves in various forms and tend to occur when the plant is still in its juvenile stage. Plant disease also has cascading effects on food security, livelihoods and the environment’s safety, so early detection is vital. This work demonstrates the effectiveness of mobile and multispectral images captured in viable and Near Infrared (NIR) ranges to identify plant diseases under realistic environmental conditions. The data sets were classified using popular CNN models Xception, DenseNet121 and ResNet50V2, resulting in greater than 92% training and 74% test accuracy for all the data collected using various Kolari vision lenses. Moreover, an openly available balanced data set was used to compare the effect of the data set balance and unbalanced characteristics on the classification accuracy. The result showed that balanced data sets do not impact the outcome.
- Full Text:
- Date Issued: 2023
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/464085 , vital:76474 , xlink:href="https://link.springer.com/chapter/10.1007/978-3-031-37717-4_21"
- Description: Plant disease identification is a critical aspect of plant health management. Identifying plant diseases is challenging since they manifest themselves in various forms and tend to occur when the plant is still in its juvenile stage. Plant disease also has cascading effects on food security, livelihoods and the environment’s safety, so early detection is vital. This work demonstrates the effectiveness of mobile and multispectral images captured in viable and Near Infrared (NIR) ranges to identify plant diseases under realistic environmental conditions. The data sets were classified using popular CNN models Xception, DenseNet121 and ResNet50V2, resulting in greater than 92% training and 74% test accuracy for all the data collected using various Kolari vision lenses. Moreover, an openly available balanced data set was used to compare the effect of the data set balance and unbalanced characteristics on the classification accuracy. The result showed that balanced data sets do not impact the outcome.
- Full Text:
- Date Issued: 2023
Multispectral Plant Disease Detection with Vision Transformer–Convolutional Neural Network Hybrid Approaches
- De Silva, Malitha, Brown, Dane L
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/463428 , vital:76408 , xlink:href="https://doi.org/10.3390/s23208531"
- Description: Plant diseases pose a critical threat to global agricultural productivity, demanding timely detection for effective crop yield management. Traditional methods for disease identification are laborious and require specialised expertise. Leveraging cutting-edge deep learning algorithms, this study explores innovative approaches to plant disease identification, combining Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) to enhance accuracy. A multispectral dataset was meticulously collected to facilitate this research using six 50 mm filter filters, covering both the visible and several near-infrared (NIR) wavelengths. Among the models employed, ViT-B16 notably achieved the highest test accuracy, precision, recall, and F1 score across all filters, with averages of 83.3%, 90.1%, 90.75%, and 89.5%, respectively. Furthermore, a comparative analysis highlights the pivotal role of balanced datasets in selecting the appropriate wavelength and deep learning model for robust disease identification. These findings promise to advance crop disease management in real-world agricultural applications and contribute to global food security. The study underscores the significance of machine learning in transforming plant disease diagnostics and encourages further research in this field.
- Full Text:
- Date Issued: 2023
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/463428 , vital:76408 , xlink:href="https://doi.org/10.3390/s23208531"
- Description: Plant diseases pose a critical threat to global agricultural productivity, demanding timely detection for effective crop yield management. Traditional methods for disease identification are laborious and require specialised expertise. Leveraging cutting-edge deep learning algorithms, this study explores innovative approaches to plant disease identification, combining Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) to enhance accuracy. A multispectral dataset was meticulously collected to facilitate this research using six 50 mm filter filters, covering both the visible and several near-infrared (NIR) wavelengths. Among the models employed, ViT-B16 notably achieved the highest test accuracy, precision, recall, and F1 score across all filters, with averages of 83.3%, 90.1%, 90.75%, and 89.5%, respectively. Furthermore, a comparative analysis highlights the pivotal role of balanced datasets in selecting the appropriate wavelength and deep learning model for robust disease identification. These findings promise to advance crop disease management in real-world agricultural applications and contribute to global food security. The study underscores the significance of machine learning in transforming plant disease diagnostics and encourages further research in this field.
- Full Text:
- Date Issued: 2023
Plant Disease Detection using Vision Transformers on Multispectral Natural Environment Images
- De Silva, Malitha, Brown, Dane L
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/463456 , vital:76410 , xlink:href="https://ieeexplore.ieee.org/abstract/document/10220517"
- Description: Enhancing agricultural practices has become essential in mitigating global hunger. Over the years, significant technological advancements have been introduced to improve the quality and quantity of harvests by effectively managing weeds, pests, and diseases. Many studies have focused on identifying plant diseases, as this information aids in making informed decisions about applying fungicides and fertilizers. Advanced systems often employ a combination of image processing and deep learning techniques to identify diseases based on visible symptoms. However, these systems typically rely on pre-existing datasets or images captured in controlled environments. This study showcases the efficacy of utilizing multispectral images captured in visible and Near Infrared (NIR) ranges for identifying plant diseases in real-world environmental conditions. The collected datasets were classified using popular Vision Transformer (ViT) models, including ViT- S16, ViT-BI6, ViT-LI6 and ViT-B32. The results showed impressive training and test accuracies for all the data collected using diverse Kolari vision lenses with 93.71 % and 90.02 %, respectively. This work highlights the potential of utilizing advanced imaging techniques for accurate and reliable plant disease identification in practical field conditions.
- Full Text:
- Date Issued: 2023
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/463456 , vital:76410 , xlink:href="https://ieeexplore.ieee.org/abstract/document/10220517"
- Description: Enhancing agricultural practices has become essential in mitigating global hunger. Over the years, significant technological advancements have been introduced to improve the quality and quantity of harvests by effectively managing weeds, pests, and diseases. Many studies have focused on identifying plant diseases, as this information aids in making informed decisions about applying fungicides and fertilizers. Advanced systems often employ a combination of image processing and deep learning techniques to identify diseases based on visible symptoms. However, these systems typically rely on pre-existing datasets or images captured in controlled environments. This study showcases the efficacy of utilizing multispectral images captured in visible and Near Infrared (NIR) ranges for identifying plant diseases in real-world environmental conditions. The collected datasets were classified using popular Vision Transformer (ViT) models, including ViT- S16, ViT-BI6, ViT-LI6 and ViT-B32. The results showed impressive training and test accuracies for all the data collected using diverse Kolari vision lenses with 93.71 % and 90.02 %, respectively. This work highlights the potential of utilizing advanced imaging techniques for accurate and reliable plant disease identification in practical field conditions.
- Full Text:
- Date Issued: 2023
Plant disease detection using deep learning on natural environment images
- De Silva, Malitha, Brown, Dane L
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/465212 , vital:76583 , xlink:href="https://ieeexplore.ieee.org/abstract/document/9855925"
- Description: Improving agriculture is one of the major concerns today, as it helps reduce global hunger. In past years, many technological advancements have been introduced to enhance harvest quality and quantity by controlling and preventing weeds, pests, and diseases. Several studies have focused on identifying diseases in plants, as it helps to make decisions on spraying fungicides and fertilizers. State-of-the-art systems typically combine image processing and deep learning methods to identify conditions with visible symptoms. However, they use already available data sets or images taken in controlled environments. This study was conducted on two data sets of ten plants collected in a natural environment. The first dataset contained RGB Visible images, while the second contained Near-Infrared (NIR) images of healthy and diseased leaves. The visible image dataset showed higher training and validation accuracies than the NIR image dataset with ResNet, Inception, VGG and MobileNet architectures. For the visible image and NIR dataset, ResNet-50V2 outperformed other models with validation accuracies of 98.35% and 94.01%, respectively.
- Full Text:
- Date Issued: 2022
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/465212 , vital:76583 , xlink:href="https://ieeexplore.ieee.org/abstract/document/9855925"
- Description: Improving agriculture is one of the major concerns today, as it helps reduce global hunger. In past years, many technological advancements have been introduced to enhance harvest quality and quantity by controlling and preventing weeds, pests, and diseases. Several studies have focused on identifying diseases in plants, as it helps to make decisions on spraying fungicides and fertilizers. State-of-the-art systems typically combine image processing and deep learning methods to identify conditions with visible symptoms. However, they use already available data sets or images taken in controlled environments. This study was conducted on two data sets of ten plants collected in a natural environment. The first dataset contained RGB Visible images, while the second contained Near-Infrared (NIR) images of healthy and diseased leaves. The visible image dataset showed higher training and validation accuracies than the NIR image dataset with ResNet, Inception, VGG and MobileNet architectures. For the visible image and NIR dataset, ResNet-50V2 outperformed other models with validation accuracies of 98.35% and 94.01%, respectively.
- Full Text:
- Date Issued: 2022
Plant disease detection using multispectral imaging
- De Silva, Malitha, Brown, Dane L
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/463439 , vital:76409 , xlink:href="https://link.springer.com/chapter/10.1007/978-3-031-35641-4_24"
- Description: People worldwide are undergoing many challenges, including food scarcity. Many pieces of research are now focused on improving agriculture to increase the harvest and reduce the cost. Identifying plant diseases and pests in the early stages helps to enhance the yield and reduce costs. However, most plant disease identification research with computer vision has been done with images taken in controlled environments on publically available data sets. Near-Infrared (NIR) imaging is a favourable approach for identifying plant diseases. Therefore, this study collected NIR images of healthy and diseased leaves in the natural environment. The dataset is tested with eight Convolutional Neural Network (CNN) models with different train-test splits ranging from 10:90 to 90:10. The evaluated models attained their highest training and test accuracies from the 70:30 split onwards. Xception outperformed all the other models in all train-test splits and achieved 100% accuracy, precision and recall in the 80:20 train-test split.
- Full Text:
- Date Issued: 2022
- Authors: De Silva, Malitha , Brown, Dane L
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/463439 , vital:76409 , xlink:href="https://link.springer.com/chapter/10.1007/978-3-031-35641-4_24"
- Description: People worldwide are undergoing many challenges, including food scarcity. Many pieces of research are now focused on improving agriculture to increase the harvest and reduce the cost. Identifying plant diseases and pests in the early stages helps to enhance the yield and reduce costs. However, most plant disease identification research with computer vision has been done with images taken in controlled environments on publically available data sets. Near-Infrared (NIR) imaging is a favourable approach for identifying plant diseases. Therefore, this study collected NIR images of healthy and diseased leaves in the natural environment. The dataset is tested with eight Convolutional Neural Network (CNN) models with different train-test splits ranging from 10:90 to 90:10. The evaluated models attained their highest training and test accuracies from the 70:30 split onwards. Xception outperformed all the other models in all train-test splits and achieved 100% accuracy, precision and recall in the 80:20 train-test split.
- Full Text:
- Date Issued: 2022
- «
- ‹
- 1
- ›
- »