Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1, 3-benzoxazine derivatives
- Mbaba, Mziyanda, Dingle, Laura M K, Cash, Devon, de la Mare, Jo-Anne, Laming, Dustin, Taylor, Dale, Hoppe, Heinrich C, Edkins, Adrienne L, Khanye, Setshaba D
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Cash, Devon , de la Mare, Jo-Anne , Laming, Dustin , Taylor, Dale , Hoppe, Heinrich C , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165395 , vital:41240 , https://doi.org/10.1016/j.ejmech.2019.111924
- Description: Cancer and malaria remain relevant pathologies in modern medicinal chemistry endeavours. This is compounded by the threat of development of resistance to existing clinical drugs in use as first-line option for treatment of these diseases. To counter this threat, strategies such as drug repurposing and hybridization are constantly adapted in contemporary drug discovery for the expansion of the drug arsenal and generation of novel chemotypes with potential to avert or delay resistance. In the present study, a polymer precursor scaffold, 1,3-benzoxazine, has been repurposed by incorporation of an organometallic ferrocene unit to produce a novel class of compounds showing in vitro biological activity against breast cancer, malaria and trypanosomiasis.
- Full Text:
- Date Issued: 2020
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Cash, Devon , de la Mare, Jo-Anne , Laming, Dustin , Taylor, Dale , Hoppe, Heinrich C , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165395 , vital:41240 , https://doi.org/10.1016/j.ejmech.2019.111924
- Description: Cancer and malaria remain relevant pathologies in modern medicinal chemistry endeavours. This is compounded by the threat of development of resistance to existing clinical drugs in use as first-line option for treatment of these diseases. To counter this threat, strategies such as drug repurposing and hybridization are constantly adapted in contemporary drug discovery for the expansion of the drug arsenal and generation of novel chemotypes with potential to avert or delay resistance. In the present study, a polymer precursor scaffold, 1,3-benzoxazine, has been repurposed by incorporation of an organometallic ferrocene unit to produce a novel class of compounds showing in vitro biological activity against breast cancer, malaria and trypanosomiasis.
- Full Text:
- Date Issued: 2020
Synthesis, characterization and biological activity of some Dithiourea Derivatives:
- Odame, Felix, Hosten, Eric C, Krause, Jason, Isaacs, Michelle, Hoppe, Heinrich C, Khanye, Setshaba D, Sayed, Yasien, Frost, Carminita L, Lobb, Kevin A, Tshentu, Zenixole R
- Authors: Odame, Felix , Hosten, Eric C , Krause, Jason , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Sayed, Yasien , Frost, Carminita L , Lobb, Kevin A , Tshentu, Zenixole R
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163046 , vital:41007 , DOI: 10.17344/acsi.2019.5689
- Description: Novel dithiourea derivatives have been designed as HIV-1 protease inhibitors using Autodock 4.2, synthesized and characterized by spectroscopic methods and microanalysis.
- Full Text:
- Date Issued: 2020
- Authors: Odame, Felix , Hosten, Eric C , Krause, Jason , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Sayed, Yasien , Frost, Carminita L , Lobb, Kevin A , Tshentu, Zenixole R
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163046 , vital:41007 , DOI: 10.17344/acsi.2019.5689
- Description: Novel dithiourea derivatives have been designed as HIV-1 protease inhibitors using Autodock 4.2, synthesized and characterized by spectroscopic methods and microanalysis.
- Full Text:
- Date Issued: 2020
Synthesis, structure and in vitro anti-trypanosomal activity of non-toxic Arylpyrrole-Based Chalcone derivatives:
- Zulu, Ayanda I, Oderinlo, Ogunyemi O, Kruger, Cuan, Isaacs, Michelle, Hoppe, Heinrich C, Smith, Vincent J, Veale, Clinton G L, Khanye, Setshaba D
- Authors: Zulu, Ayanda I , Oderinlo, Ogunyemi O , Kruger, Cuan , Isaacs, Michelle , Hoppe, Heinrich C , Smith, Vincent J , Veale, Clinton G L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/179017 , vital:40096 , https://doi.org/10.3390/molecules25071668
- Description: With an intention of identifying chalcone derivatives exhibiting anti-protozoal activity, a cohort of relatively unexplored arylpyrrole-based chalcone derivatives were synthesized in moderate to good yields. The resultant compounds were evaluated in vitro for their potential activity against a cultured Trypanosoma brucei brucei 427 strain. Several compounds displayed mostly modest in vitro anti-trypanosomal activity with compounds 10e and 10h emerging as active candidates with IC50 values of 4.09 and 5.11 µM, respectively. More importantly, a concomitant assessment of their activity against a human cervix adenocarcinoma (HeLa) cell line revealed that these compounds are non-toxic.
- Full Text:
- Date Issued: 2020
- Authors: Zulu, Ayanda I , Oderinlo, Ogunyemi O , Kruger, Cuan , Isaacs, Michelle , Hoppe, Heinrich C , Smith, Vincent J , Veale, Clinton G L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/179017 , vital:40096 , https://doi.org/10.3390/molecules25071668
- Description: With an intention of identifying chalcone derivatives exhibiting anti-protozoal activity, a cohort of relatively unexplored arylpyrrole-based chalcone derivatives were synthesized in moderate to good yields. The resultant compounds were evaluated in vitro for their potential activity against a cultured Trypanosoma brucei brucei 427 strain. Several compounds displayed mostly modest in vitro anti-trypanosomal activity with compounds 10e and 10h emerging as active candidates with IC50 values of 4.09 and 5.11 µM, respectively. More importantly, a concomitant assessment of their activity against a human cervix adenocarcinoma (HeLa) cell line revealed that these compounds are non-toxic.
- Full Text:
- Date Issued: 2020
The in vitro antiplasmodial and antiproliferative activity of new ferrocene-based α-aminocresols targeting hemozoin inhibition and DNA interaction:
- Mbaba, Mziyanda, Dingle, Laura M K, Swart, Tarryn, Cash, Devon, Laming, Dustin, de la Mare, Jo-Anne, Taylor, Dale, Hoppe, Heinrich C, Biot, Christophe, Edkins, Adrienne L, Khanye, Setshaba D
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Swart, Tarryn , Cash, Devon , Laming, Dustin , de la Mare, Jo-Anne , Taylor, Dale , Hoppe, Heinrich C , Biot, Christophe , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149347 , vital:38827 , https://0-doi.org.wam.seals.ac.za/10.1002/cbic.202000132
- Description: Compounds incorporating ferrocene in a aminocresol scaffold showed antiplasmodial and anticancer activity. SAR studies revealed that an OH group and rotatable C–NH bond are vital for biological activity, with spectrophotometric techniques and docking simulations suggesting a dual mode of action involving hemozoin inhibition and DNA interaction. Targeting multiple pathways could delay the development of clinical resistance.
- Full Text:
- Date Issued: 2020
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Swart, Tarryn , Cash, Devon , Laming, Dustin , de la Mare, Jo-Anne , Taylor, Dale , Hoppe, Heinrich C , Biot, Christophe , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149347 , vital:38827 , https://0-doi.org.wam.seals.ac.za/10.1002/cbic.202000132
- Description: Compounds incorporating ferrocene in a aminocresol scaffold showed antiplasmodial and anticancer activity. SAR studies revealed that an OH group and rotatable C–NH bond are vital for biological activity, with spectrophotometric techniques and docking simulations suggesting a dual mode of action involving hemozoin inhibition and DNA interaction. Targeting multiple pathways could delay the development of clinical resistance.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »