Characterization and computational studies of 2-(benzamido) thiazol-5-yl benzoate
- Odame, Felix, Hosten, Eric C, Betz, Richard, Lobb, Kevin A, Tshentu, Zenixole R
- Authors: Odame, Felix , Hosten, Eric C , Betz, Richard , Lobb, Kevin A , Tshentu, Zenixole R
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447003 , vital:74576 , xlink:href="https://doi.org/10.1134/S0022476619010190"
- Description: Thiazoles have shown a broad range of biological activities and are found in many potent biologically active molecules such as Sulfathiazol (antimicrobial drug), Ritonavir (antiretroviral drug), Abafungin (antifungal drug), and Tiazofurin (antineoplastic drug) [1]. They have exhibited some degree of plant growth regulatory and antifungal activities [2], whilst some thiazoles have shown anti-infective [3] as well as antibacterial activities [4]. The regio-controlled synthesis of 2,5-disubstituted and 2,4,5-trisubstituted thiazoles from ethyl-2-bromo-5-chloro-4-thiazolecarboxylates using sequential palladium-catalyzed coupling reactions has been reported [5]. An efficient general method for the preparation of 2,4-di- and trisubsituted thiazoles is via P–TsOH. H2O-Catalyzed cyclization of trisubstituted propargylic alcohols with thioamides has been accomplished with moderate to excellent product yields under mild and standard conditions [6]. In the presence of triethylamine, (Z)-(2-acetoxyl-1-alkenyl) phenyl-λ3 iodanes reacts with thioureas or thioamides in methanol to afford 2,4- disubstituted thiazoles in good yields. The reaction is thought to proceed by the generation of highly reactive α-λ3 iodanyl ketones through ester exchange of the β-acetoxy group with liberation of methyl acetate, followed by nucleophilic substitutions with thioureas or thioamides [7].
- Full Text:
- Date Issued: 2019
- Authors: Odame, Felix , Hosten, Eric C , Betz, Richard , Lobb, Kevin A , Tshentu, Zenixole R
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447003 , vital:74576 , xlink:href="https://doi.org/10.1134/S0022476619010190"
- Description: Thiazoles have shown a broad range of biological activities and are found in many potent biologically active molecules such as Sulfathiazol (antimicrobial drug), Ritonavir (antiretroviral drug), Abafungin (antifungal drug), and Tiazofurin (antineoplastic drug) [1]. They have exhibited some degree of plant growth regulatory and antifungal activities [2], whilst some thiazoles have shown anti-infective [3] as well as antibacterial activities [4]. The regio-controlled synthesis of 2,5-disubstituted and 2,4,5-trisubstituted thiazoles from ethyl-2-bromo-5-chloro-4-thiazolecarboxylates using sequential palladium-catalyzed coupling reactions has been reported [5]. An efficient general method for the preparation of 2,4-di- and trisubsituted thiazoles is via P–TsOH. H2O-Catalyzed cyclization of trisubstituted propargylic alcohols with thioamides has been accomplished with moderate to excellent product yields under mild and standard conditions [6]. In the presence of triethylamine, (Z)-(2-acetoxyl-1-alkenyl) phenyl-λ3 iodanes reacts with thioureas or thioamides in methanol to afford 2,4- disubstituted thiazoles in good yields. The reaction is thought to proceed by the generation of highly reactive α-λ3 iodanyl ketones through ester exchange of the β-acetoxy group with liberation of methyl acetate, followed by nucleophilic substitutions with thioureas or thioamides [7].
- Full Text:
- Date Issued: 2019
Establishing computational approaches towards identifying malarial allosteric modulators: a case study of plasmodium falciparum hsp70s
- Amusengeri, Arnold, Astl, Lindy, Lobb, Kevin A, Verkhivker, Gennady M, Tastan Bishop, Özlem
- Authors: Amusengeri, Arnold , Astl, Lindy , Lobb, Kevin A , Verkhivker, Gennady M , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163000 , vital:41003 , https://doi.org/10.3390/ijms20225574
- Description: Combating malaria is almost a never-ending battle, as Plasmodium parasites develop resistance to the drugs used against them, as observed recently in artemisinin-based combination therapies. The main concern now is if the resistant parasite strains spread from Southeast Asia to Africa, the continent hosting most malaria cases. To prevent catastrophic results, we need to find non-conventional approaches. Allosteric drug targeting sites and modulators might be a new hope for malarial treatments. Heat shock proteins (HSPs) are potential malarial drug targets and have complex allosteric control mechanisms. Yet, studies on designing allosteric modulators against them are limited. Here, we identified allosteric modulators (SANC190 and SANC651) against P. falciparum Hsp70-1 and Hsp70-x, affecting the conformational dynamics of the proteins, delicately balanced by the endogenous ligands. Previously, we established a pipeline to identify allosteric sites and modulators. This study also further investigated alternative approaches to speed up the process by comparing all atom molecular dynamics simulations and dynamic residue network analysis with the coarse-grained (CG) versions of the calculations. Betweenness centrality (BC) profiles for PfHsp70-1 and PfHsp70-x derived from CG simulations not only revealed similar trends but also pointed to the same functional regions and specific residues corresponding to BC profile peaks.
- Full Text:
- Date Issued: 2019
- Authors: Amusengeri, Arnold , Astl, Lindy , Lobb, Kevin A , Verkhivker, Gennady M , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163000 , vital:41003 , https://doi.org/10.3390/ijms20225574
- Description: Combating malaria is almost a never-ending battle, as Plasmodium parasites develop resistance to the drugs used against them, as observed recently in artemisinin-based combination therapies. The main concern now is if the resistant parasite strains spread from Southeast Asia to Africa, the continent hosting most malaria cases. To prevent catastrophic results, we need to find non-conventional approaches. Allosteric drug targeting sites and modulators might be a new hope for malarial treatments. Heat shock proteins (HSPs) are potential malarial drug targets and have complex allosteric control mechanisms. Yet, studies on designing allosteric modulators against them are limited. Here, we identified allosteric modulators (SANC190 and SANC651) against P. falciparum Hsp70-1 and Hsp70-x, affecting the conformational dynamics of the proteins, delicately balanced by the endogenous ligands. Previously, we established a pipeline to identify allosteric sites and modulators. This study also further investigated alternative approaches to speed up the process by comparing all atom molecular dynamics simulations and dynamic residue network analysis with the coarse-grained (CG) versions of the calculations. Betweenness centrality (BC) profiles for PfHsp70-1 and PfHsp70-x derived from CG simulations not only revealed similar trends but also pointed to the same functional regions and specific residues corresponding to BC profile peaks.
- Full Text:
- Date Issued: 2019
High throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV
- Beg, Anam, Khan, Faez I, Lobb, Kevin A, Islam, Asimul, Ahmad, Faizan, Hassan, M Imtaiyaz
- Authors: Beg, Anam , Khan, Faez I , Lobb, Kevin A , Islam, Asimul , Ahmad, Faizan , Hassan, M Imtaiyaz
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/${Handle} , vital:74587 , xlink:href="https://doi.org/10.1080/07391102.2018.1479310"
- Description: Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is associated with many diseases including cancer and neurodegenerative disorders and thus being considered as a potential drug target. Here, we have employed the knowledge of three-dimensional structure of CAMKIV to identify new inhibitors for possible therapeutic intervention. We have employed virtual high throughput screening of 12,500 natural compounds of Zinc database to screen the best possible inhibitors of CAMKIV. Subsequently, 40 compounds which showed significant docking scores (−11.6 to −10.0 kcal/mol) were selected and further filtered through Lipinski rule and drug likeness parameter to get best inhibitors of CAMKIV. Docking results are indicating that ligands are binding to the hydrophobic cavity of the kinase domain of CAMKIV and forming a significant number of non-covalent interactions. Four compounds, ZINC02098378, ZINC12866674, ZINC04293413, and ZINC13403020, showing excellent binding affinity and drug likeness were subjected to molecular dynamics simulation to evaluate their mechanism of interaction and stability of protein-ligand complex. Our observations clearly suggesting that these selected ligands may be further employed for therapeutic intervention to address CAMKIV associated diseases.
- Full Text:
- Date Issued: 2019
- Authors: Beg, Anam , Khan, Faez I , Lobb, Kevin A , Islam, Asimul , Ahmad, Faizan , Hassan, M Imtaiyaz
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/${Handle} , vital:74587 , xlink:href="https://doi.org/10.1080/07391102.2018.1479310"
- Description: Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is associated with many diseases including cancer and neurodegenerative disorders and thus being considered as a potential drug target. Here, we have employed the knowledge of three-dimensional structure of CAMKIV to identify new inhibitors for possible therapeutic intervention. We have employed virtual high throughput screening of 12,500 natural compounds of Zinc database to screen the best possible inhibitors of CAMKIV. Subsequently, 40 compounds which showed significant docking scores (−11.6 to −10.0 kcal/mol) were selected and further filtered through Lipinski rule and drug likeness parameter to get best inhibitors of CAMKIV. Docking results are indicating that ligands are binding to the hydrophobic cavity of the kinase domain of CAMKIV and forming a significant number of non-covalent interactions. Four compounds, ZINC02098378, ZINC12866674, ZINC04293413, and ZINC13403020, showing excellent binding affinity and drug likeness were subjected to molecular dynamics simulation to evaluate their mechanism of interaction and stability of protein-ligand complex. Our observations clearly suggesting that these selected ligands may be further employed for therapeutic intervention to address CAMKIV associated diseases.
- Full Text:
- Date Issued: 2019
Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4)
- Mohammad, Taj, Khan, Faez I, Lobb, Kevin A, Islam, Asimul, Ahmad, Faizan, Hassan, M Imtaiyaz
- Authors: Mohammad, Taj , Khan, Faez I , Lobb, Kevin A , Islam, Asimul , Ahmad, Faizan , Hassan, M Imtaiyaz
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447159 , vital:74588 , xlink:href="https://doi.org/10.1080/07391102.2018.1468282"
- Description: Microtubule affinity-regulating kinase 4 (MARK4) has recently been identified as a potential drug target for several complex diseases including cancer, diabetes and neurodegenerative disorders. Inhibition of MARK4 activity is an appealing therapeutic option to treat such diseases. Here, we have performed structure-based virtual high-throughput screening of 100,000 naturally occurring compounds from ZINC database against MARK4 to find its potential inhibitors. The resulted hits were selected, based on the binding affinities, docking scores and selectivity. Further, binding energy calculation, Lipinski filtration and ADMET prediction were carried out to find safe and better hits against MARK4. Best 10 compounds bearing high specificity and binding efficiency were selected, and their binding pattern to MARK4 was analyzed in detail. Finally, 100 ns molecular dynamics simulation was performed to evaluate; the dynamics stability of MARK4-compound complex. In conclusion, these selected natural compounds from ZINC database might be potential leads against MARK4, and can further be exploited in drug design and development for associated diseases.
- Full Text:
- Date Issued: 2019
- Authors: Mohammad, Taj , Khan, Faez I , Lobb, Kevin A , Islam, Asimul , Ahmad, Faizan , Hassan, M Imtaiyaz
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447159 , vital:74588 , xlink:href="https://doi.org/10.1080/07391102.2018.1468282"
- Description: Microtubule affinity-regulating kinase 4 (MARK4) has recently been identified as a potential drug target for several complex diseases including cancer, diabetes and neurodegenerative disorders. Inhibition of MARK4 activity is an appealing therapeutic option to treat such diseases. Here, we have performed structure-based virtual high-throughput screening of 100,000 naturally occurring compounds from ZINC database against MARK4 to find its potential inhibitors. The resulted hits were selected, based on the binding affinities, docking scores and selectivity. Further, binding energy calculation, Lipinski filtration and ADMET prediction were carried out to find safe and better hits against MARK4. Best 10 compounds bearing high specificity and binding efficiency were selected, and their binding pattern to MARK4 was analyzed in detail. Finally, 100 ns molecular dynamics simulation was performed to evaluate; the dynamics stability of MARK4-compound complex. In conclusion, these selected natural compounds from ZINC database might be potential leads against MARK4, and can further be exploited in drug design and development for associated diseases.
- Full Text:
- Date Issued: 2019
In silico study of Plasmodium 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) for identification of novel inhibitors from SANCDB:
- Diallo, Bakary N, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162687 , vital:40973 , https://doi.org/10.21955/aasopenres.1114960.1
- Description: In this study, we intended to find potential 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) inhibitors as antimalarial drugs from the South African National Compound Database (SANCDB; https://sancdb.rubi.ru.ac.za) using computational tools.
- Full Text:
- Date Issued: 2019
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162687 , vital:40973 , https://doi.org/10.21955/aasopenres.1114960.1
- Description: In this study, we intended to find potential 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) inhibitors as antimalarial drugs from the South African National Compound Database (SANCDB; https://sancdb.rubi.ru.ac.za) using computational tools.
- Full Text:
- Date Issued: 2019
Novel potential antimalarials through drug repurposing and multitargeting: a Computational Approach
- Diallo, Bakary N, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162676 , vital:40972 , https://doi.org/10.21955/aasopenres.1114955.1
- Description: This study aims to identify potential antimalarials from Food and Drug Administration (FDA) approved drugs.
- Full Text:
- Date Issued: 2019
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162676 , vital:40972 , https://doi.org/10.21955/aasopenres.1114955.1
- Description: This study aims to identify potential antimalarials from Food and Drug Administration (FDA) approved drugs.
- Full Text:
- Date Issued: 2019
Synthesis of N-Substituted phosphoramidic acid esters as “reverse” fosmidomycin analogues
- Adeyemi, Christiana M, Hoppe, Heinrich C, Isaacs, Michelle, Klein, Rosalyn, Lobb, Kevin A, Kaye, Perry T
- Authors: Adeyemi, Christiana M , Hoppe, Heinrich C , Isaacs, Michelle , Klein, Rosalyn , Lobb, Kevin A , Kaye, Perry T
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/443238 , vital:74101 , https://doi.org/10.1016/j.tet.2019.02.003
- Description: An efficient synthetic pathway to a series of novel “reverse” fosmidomycin analogues has been developed, commencing from substituted benzylamines. In these analogues, the fosmidomycin hydroxamate moiety is reversed and the tetrahedral methylene carbon adjacent to the phosphonate moiety is replaced by a nitrogen atom bearing different benzyl groups. The resulting phosphonate esters were designed as potential antimalarial “pro-drugs”.
- Full Text:
- Date Issued: 2019
- Authors: Adeyemi, Christiana M , Hoppe, Heinrich C , Isaacs, Michelle , Klein, Rosalyn , Lobb, Kevin A , Kaye, Perry T
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/443238 , vital:74101 , https://doi.org/10.1016/j.tet.2019.02.003
- Description: An efficient synthetic pathway to a series of novel “reverse” fosmidomycin analogues has been developed, commencing from substituted benzylamines. In these analogues, the fosmidomycin hydroxamate moiety is reversed and the tetrahedral methylene carbon adjacent to the phosphonate moiety is replaced by a nitrogen atom bearing different benzyl groups. The resulting phosphonate esters were designed as potential antimalarial “pro-drugs”.
- Full Text:
- Date Issued: 2019
Synthesis of N-Substituted phosphoramidic acid esters as “reverse” fosmidomycin analogues
- Adeyemi, Christiana M, Hoppe, Heinrich C, Isaacs, Michelle, Klein, Rosalyn, Lobb, Kevin A, Kaye, Perry T
- Authors: Adeyemi, Christiana M , Hoppe, Heinrich C , Isaacs, Michelle , Klein, Rosalyn , Lobb, Kevin A , Kaye, Perry T
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447196 , vital:74591 , xlink:href="https://doi.org/10.1016/j.tet.2019.02.003"
- Description: An efficient synthetic pathway to a series of novel “reverse” fosmidomycin analogues has been developed, commencing from substituted benzylamines. In these analogues, the fosmidomycin hydroxamate moiety is reversed and the tetrahedral methylene carbon adjacent to the phosphonate moiety is replaced by a nitrogen atom bearing different benzyl groups. The resulting phosphonate esters were designed as potential antimalarial “pro-drugs”.
- Full Text:
- Date Issued: 2019
- Authors: Adeyemi, Christiana M , Hoppe, Heinrich C , Isaacs, Michelle , Klein, Rosalyn , Lobb, Kevin A , Kaye, Perry T
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447196 , vital:74591 , xlink:href="https://doi.org/10.1016/j.tet.2019.02.003"
- Description: An efficient synthetic pathway to a series of novel “reverse” fosmidomycin analogues has been developed, commencing from substituted benzylamines. In these analogues, the fosmidomycin hydroxamate moiety is reversed and the tetrahedral methylene carbon adjacent to the phosphonate moiety is replaced by a nitrogen atom bearing different benzyl groups. The resulting phosphonate esters were designed as potential antimalarial “pro-drugs”.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »