Biocompatibility of biomaterials for nanoencapsulation: Current approaches
- Witika, Bwalya A, Makoni, Pedzisai A, Matafwali, Scott K, Chabalenge, Billy, Mwila, Chiluba, Kalungia, Aubrey C, Nkanga, Christian I, Bapolisi, Alain M, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Chabalenge, Billy , Mwila, Chiluba , Kalungia, Aubrey C , Nkanga, Christian I , Bapolisi, Alain M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183289 , vital:43939 , xlink:href="https://doi.org/10.3390/nano10091649"
- Description: Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
- Full Text:
- Date Issued: 2020
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Chabalenge, Billy , Mwila, Chiluba , Kalungia, Aubrey C , Nkanga, Christian I , Bapolisi, Alain M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183289 , vital:43939 , xlink:href="https://doi.org/10.3390/nano10091649"
- Description: Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
- Full Text:
- Date Issued: 2020
Improved Stability of Rifampicin in the Presence of Gastric-Resistant Isoniazid Microspheres in Acidic Media
- Mwila, Chiluba, Walker, Roderick B
- Authors: Mwila, Chiluba , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183210 , vital:43929 , xlink:href="https://doi.org/10.3390/pharmaceutics12030234"
- Description: The degradation of rifampicin (RIF) in an acidic medium to form 3-formyl rifamycin SV, a poorly absorbed compound, is accelerated in the presence of isoniazid, contributing to the poor bioavailability of rifampicin. This manuscript presents a novel approach in which isoniazid is formulated into gastric-resistant sustained-release microspheres and RIF into microporous floating sustained-release microspheres to reduce the potential for interaction between RIF and isoniazid (INH) in an acidic environment. Hydroxypropyl methylcellulose acetate succinate and Eudragit® L100 polymers were used for the manufacture of isoniazid-loaded gastric-resistant sustained-release microspheres using an o/o solvent emulsification evaporation approach. Microporous floating sustained-release microspheres for the delivery of rifampicin in the stomach were manufactured using emulsification and a diffusion/evaporation process. The design of experiments was used to evaluate the impact of input variables on predefined responses or quality attributes of the microspheres. The percent degradation of rifampicin following 12 h dissolution testing in 0.1 M HCl pH 1.2 in the presence of isoniazid gastric-resistant sustained-release microspheres was only 4.44%. These results indicate that the degradation of rifampicin in the presence of isoniazid in acidic media can be reduced by encapsulation of both active pharmaceutical ingredients to ensure release in different segments of the gastrointestinal tract, potentially improving the bioavailability of rifampicin.
- Full Text:
- Date Issued: 2020
- Authors: Mwila, Chiluba , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183210 , vital:43929 , xlink:href="https://doi.org/10.3390/pharmaceutics12030234"
- Description: The degradation of rifampicin (RIF) in an acidic medium to form 3-formyl rifamycin SV, a poorly absorbed compound, is accelerated in the presence of isoniazid, contributing to the poor bioavailability of rifampicin. This manuscript presents a novel approach in which isoniazid is formulated into gastric-resistant sustained-release microspheres and RIF into microporous floating sustained-release microspheres to reduce the potential for interaction between RIF and isoniazid (INH) in an acidic environment. Hydroxypropyl methylcellulose acetate succinate and Eudragit® L100 polymers were used for the manufacture of isoniazid-loaded gastric-resistant sustained-release microspheres using an o/o solvent emulsification evaporation approach. Microporous floating sustained-release microspheres for the delivery of rifampicin in the stomach were manufactured using emulsification and a diffusion/evaporation process. The design of experiments was used to evaluate the impact of input variables on predefined responses or quality attributes of the microspheres. The percent degradation of rifampicin following 12 h dissolution testing in 0.1 M HCl pH 1.2 in the presence of isoniazid gastric-resistant sustained-release microspheres was only 4.44%. These results indicate that the degradation of rifampicin in the presence of isoniazid in acidic media can be reduced by encapsulation of both active pharmaceutical ingredients to ensure release in different segments of the gastrointestinal tract, potentially improving the bioavailability of rifampicin.
- Full Text:
- Date Issued: 2020
Nano-biomimetic drug delivery vehicles: Potential approaches for COVID-19 treatment
- Witika, Bwalya A, Makoni, Pedzisai A, Mweetwa, Larry L, Ntemi, Pascal V, Chikukwa, Mellisa T R, Matafwali, Scott K, Mwila, Chiluba, Mudenda, Steward, Katandula, Jonathan, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Mweetwa, Larry L , Ntemi, Pascal V , Chikukwa, Mellisa T R , Matafwali, Scott K , Mwila, Chiluba , Mudenda, Steward , Katandula, Jonathan , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183440 , vital:43991 , xlink:href="https://doi.org/10.3390/molecules25245952"
- Description: The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
- Full Text:
- Date Issued: 2020
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Mweetwa, Larry L , Ntemi, Pascal V , Chikukwa, Mellisa T R , Matafwali, Scott K , Mwila, Chiluba , Mudenda, Steward , Katandula, Jonathan , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183440 , vital:43991 , xlink:href="https://doi.org/10.3390/molecules25245952"
- Description: The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
- Full Text:
- Date Issued: 2020
Development and assessment of a USP Apparatus 3 dissolution test method for sustained-release Nevirapine matrix tablets
- Mwila, Chiluba, Khamanga, Sandile M M, Walker, Roderick B
- Authors: Mwila, Chiluba , Khamanga, Sandile M M , Walker, Roderick B
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184779 , vital:44271 , xlink:href="https://doi.org/10.14227/dt230316p22"
- Description: Dissolution testing is a quality control tool used to assess batch-to-batch performance of dosage forms, thereby providing continued assurance of product quality. Analytical methods for the assessment of pharmaceutical product quality must be validated according to regulatory guidelines to ensure that tests are reliable and valid. Agitation rate, mesh pore size, surfactant concentration, and dissolution medium molarity are experimental parameters that may affect nevirapine (NVP) release and were investigated and optimized to ensure that consistent, reliable, and valid results using Apparatus 3 were produced. Agitation rate was investigated to establish an equivalent response to that observed for NVP release using Apparatus 2 at 50 rpm. A reciprocation rate of 5–10 dpm produced dissolution profiles that were similar to those observed using Apparatus 2. An increase in the molarity of the dissolution medium slightly increased the release rate of NVP, and a 50 mM buffer maintained at pH values mimicking gastrointestinal tract (GIT) conditions was selected for all experiments. With the addition of 2% sodium lauryl sulfate (SLS) to the dissolution medium, >80% NVP was released from the tablets over the test period. The NVP release rate increased with an increase in the mesh pore size; however, the extent of release was not affected by this parameter. Dissolution test samples were analyzed using HPLC, and dissolution methods were validated for NVP stability in the dissolution medium, specificity, linearity and range, repeatability, intermediate precision, and accuracy as defined by ICH. The dissolution method used for testing NVP tablets can be regarded as an appropriate tool for the evaluation of sustained-release (SR) NVP formulations and the impact of formulation composition and product quality attributes on drug release.
- Full Text:
- Date Issued: 2016
- Authors: Mwila, Chiluba , Khamanga, Sandile M M , Walker, Roderick B
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184779 , vital:44271 , xlink:href="https://doi.org/10.14227/dt230316p22"
- Description: Dissolution testing is a quality control tool used to assess batch-to-batch performance of dosage forms, thereby providing continued assurance of product quality. Analytical methods for the assessment of pharmaceutical product quality must be validated according to regulatory guidelines to ensure that tests are reliable and valid. Agitation rate, mesh pore size, surfactant concentration, and dissolution medium molarity are experimental parameters that may affect nevirapine (NVP) release and were investigated and optimized to ensure that consistent, reliable, and valid results using Apparatus 3 were produced. Agitation rate was investigated to establish an equivalent response to that observed for NVP release using Apparatus 2 at 50 rpm. A reciprocation rate of 5–10 dpm produced dissolution profiles that were similar to those observed using Apparatus 2. An increase in the molarity of the dissolution medium slightly increased the release rate of NVP, and a 50 mM buffer maintained at pH values mimicking gastrointestinal tract (GIT) conditions was selected for all experiments. With the addition of 2% sodium lauryl sulfate (SLS) to the dissolution medium, >80% NVP was released from the tablets over the test period. The NVP release rate increased with an increase in the mesh pore size; however, the extent of release was not affected by this parameter. Dissolution test samples were analyzed using HPLC, and dissolution methods were validated for NVP stability in the dissolution medium, specificity, linearity and range, repeatability, intermediate precision, and accuracy as defined by ICH. The dissolution method used for testing NVP tablets can be regarded as an appropriate tool for the evaluation of sustained-release (SR) NVP formulations and the impact of formulation composition and product quality attributes on drug release.
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »