Bioinformatic analysis of Aminoacyl tRNA Synthetases as potential antimalarial drug targets
- Authors: Nyamai, Dorothy Wavinya
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/164579 , vital:41142 , doi:10.21504/10962/164579
- Description: Thesis (PhD)--Rhodes University, Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
- Authors: Nyamai, Dorothy Wavinya
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/164579 , vital:41142 , doi:10.21504/10962/164579
- Description: Thesis (PhD)--Rhodes University, Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
Identification of Selective Novel Hits against Plasmodium falciparum Prolyl tRNA Synthetase Active Site and a Predicted Allosteric Site Using in silico Approaches:
- Nyamai, Dorothy Wavinya, Tastan Bishop, Özlem
- Authors: Nyamai, Dorothy Wavinya , Tastan Bishop, Özlem
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149229 , vital:38817 , https://doi.org/10.3390/ijms21113803
- Description: Recently, there has been increased interest in aminoacyl tRNA synthetases (aaRSs) as potential malarial drug targets. These enzymes play a key role in protein translation by the addition of amino acids to their cognate tRNA. The aaRSs are present in all Plasmodium life cycle stages, and thus present an attractive malarial drug target. Prolyl tRNA synthetase is a class II aaRS that functions in charging tRNA with proline. Various inhibitors against Plasmodium falciparum ProRS (PfProRS) active site have been designed. However, none have gone through clinical trials as they have been found to be highly toxic to human cells. Recently, a possible allosteric site was reported in PfProRS with two possible allosteric modulators: glyburide and TCMDC-124506. In this study, we sought to identify novel selective inhibitors targeting PfProRS active site and possible novel allosteric modulators of this enzyme. To achieve this, virtual screening of South African natural compounds against PfProRS and the human homologue was carried out using AutoDock Vina. The modulation of protein motions by ligand binding was studied by molecular dynamics (MD) using the GROningen MAchine for Chemical Simulations (GROMACS) tool. To further analyse the protein global motions and energetic changes upon ligand binding, principal component analysis (PCA), and free energy landscape (FEL) calculations were performed.
- Full Text:
- Date Issued: 2020
- Authors: Nyamai, Dorothy Wavinya , Tastan Bishop, Özlem
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149229 , vital:38817 , https://doi.org/10.3390/ijms21113803
- Description: Recently, there has been increased interest in aminoacyl tRNA synthetases (aaRSs) as potential malarial drug targets. These enzymes play a key role in protein translation by the addition of amino acids to their cognate tRNA. The aaRSs are present in all Plasmodium life cycle stages, and thus present an attractive malarial drug target. Prolyl tRNA synthetase is a class II aaRS that functions in charging tRNA with proline. Various inhibitors against Plasmodium falciparum ProRS (PfProRS) active site have been designed. However, none have gone through clinical trials as they have been found to be highly toxic to human cells. Recently, a possible allosteric site was reported in PfProRS with two possible allosteric modulators: glyburide and TCMDC-124506. In this study, we sought to identify novel selective inhibitors targeting PfProRS active site and possible novel allosteric modulators of this enzyme. To achieve this, virtual screening of South African natural compounds against PfProRS and the human homologue was carried out using AutoDock Vina. The modulation of protein motions by ligand binding was studied by molecular dynamics (MD) using the GROningen MAchine for Chemical Simulations (GROMACS) tool. To further analyse the protein global motions and energetic changes upon ligand binding, principal component analysis (PCA), and free energy landscape (FEL) calculations were performed.
- Full Text:
- Date Issued: 2020
Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study
- Nyamai, Dorothy Wavinya, Tastan Bishop, Özlem
- Authors: Nyamai, Dorothy Wavinya , Tastan Bishop, Özlem
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148368 , vital:38733 , DOI: 10.1101/440891
- Description: Treatment of parasitic diseases has been challenging due to evolution of drug resistant parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of malarial parasite, Plasmodium, and the pathway is present in all of its life cycle stages. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse amino acid addition to the cognate tRNA. This study sought to understand differences between Plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis.
- Full Text:
- Date Issued: 2018
- Authors: Nyamai, Dorothy Wavinya , Tastan Bishop, Özlem
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148368 , vital:38733 , DOI: 10.1101/440891
- Description: Treatment of parasitic diseases has been challenging due to evolution of drug resistant parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of malarial parasite, Plasmodium, and the pathway is present in all of its life cycle stages. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse amino acid addition to the cognate tRNA. This study sought to understand differences between Plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »