Application of dermal microdialysis and tape stripping methods to determine the bioavailability and/or bioequivalence of topical ketoprofen formulations
- Authors: Tettey-Amlalo, Ralph Nii Okai
- Date: 2008
- Subjects: Drugs -- Therapeutic equivalency Transdermal medication High performance liquid chromatography Nonsteroidal anti-inflammatory agents -- Bioavailability Nonsteroidal anti-inflammatory agents -- Effectiveness Nonsteroidal anti-inflammatory agents -- Testing Nonsteroidal anti-inflammatory agents -- Side effects
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3796 , http://hdl.handle.net/10962/d1003274
- Description: The widespread acceptance of topical formulations intended for local and/or regional activity has prompted renewed interest in developing a model to determine the bioavailability of drugs in order to establish bioequivalence as a means of evaluating formulation performance of multisource products and also for use during formulation development. Current in vivo techniques such as blister suction and skin biopsy amongst others used to determine the bioavailability and/or bioequivalence of topical formulations are either too invasive to generate appropriate concentration-time profiles or require large numbers of study subjects thereby making the study expensive and time-consuming. Moreover, there are currently no sampling techniques that can demonstrate dermal bioavailability and/or bioequivalence of topical formulations intended for local and/or regional activity. Dermal microdialysis is a relatively new application of microdialysis that permits continuous monitoring of endogenous and/or exogenous solutes in the interstitial fluid. The technique is involves the implantation of semi-permeable membranes which are perfused with an isotonic medium at extremely slow flow rates and collection of microlitre sample volumes containing diffused drugs. Tape stripping, a relatively older technique, has been extensively used in comparative bioavailability studies of various topical formulations. However, due to shortcomings arising from reproducibility and inter-subject variation amongst others, the published FDA guidance outlining the initial protocol was subsequently withdrawn. The incorporation of transepidermal water loss with tape stripping has garnered renewed interest and has been used for the determination of drug bioavailability from a number of topical formulations. Hence the primary objective of this research is to develop and evaluate microdialysis sampling and tape stripping techniques, including the incorporation of the determination of transepidermal water loss, to assess the dermal bioavailability of ketoprofen from topical gel formulations and to develop models for bioequivalence assessment. A rapid UPLC-MS/MS method with requisite sensitivity for the analysis of samples generated from dermal microdialysis was developed and validated which accommodated the microlitre sample volumes collected. An HPLC-UV method was developed and validated for the analysis of samples generated from the in vitro microdialysis and in vivo tape stripping studies. The work presented herein contributes to a growing body of scientific knowledge seeking to develop a model for the determination of bioequivalence of pharmaceutically equivalent topical formulations intended for local and/or regional activity in human subjects.
- Full Text:
- Date Issued: 2008
In vitro release of ketoprofen from proprietary and extemporaneously manufactured gels
- Authors: Tettey-Amlalo, Ralph Nii Okai
- Date: 2005
- Subjects: Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3797 , http://hdl.handle.net/10962/d1003275 , Transdermal medication , Drug delivery systems , High performance liquid chromatography , Nonsteroidal anti-inflammatory agents , Rheumatoid arthritis -- Treatment
- Description: Ketoprofen is a potent non-steroidal anti-inflammatory drug which is used for the treatment of rheumatoid arthritis. The oral administration of ketoprofen can cause gastric irritation and adverse renal effects. Transdermal delivery of the drug can bypass gastrointestinal disturbances and provide relatively consistent drug concentrations at the site of administration. The release of ketoprofen from proprietary gel products from three different countries was evaluated by comparing the in vitro release profiles. Twenty extemporaneously prepared ketoprofen gel formulations using Carbopol® polymers were manufactured. The effect of polymer, drug concentration, pH and solvent systems on the in vitro release of ketoprofen from these formulations were investigated. The gels were evaluated for drug content and pH. The release of the drug from all the formulations obeyed the Higuchi principle. Two static FDA approved diffusion cells, namely the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell, were compared by measuring the in vitro release rate of ketoprofen from all the gel formulations through a synthetic silicone membrane. High-performance liquid chromatography and ultraviolet spectrophotometric analytical techniques were both used for the analysis of ketoprofen. The validated methods were employed for the determination of ketoprofen in the sample solutions taken from the receptor fluid. Two of the three proprietary products registered under the same manufacturing license exhibited similar results whereas the third product differed significantly. Among the variables investigated, the vehicle pH and solvent composition were found have the most significant effect on the in vitro release of ketoprofen from Carbopol® polymers. The different grades of Carbopol® polymers showed statistically significantly different release kinetics with respect to lag time. When evaluating the proprietary products, both the modified Franz diffusion cell and the European Pharmacopoeia diffusion cell were deemed adequate although higher profiles were generally obtained from the European Pharmacopoeia diffusion cells. Smoother diffusion profiles were obtained from samples analysed by high-performance liquid chromatography than by ultraviolet spectrophotometry in both diffusion cells. Sample solutions taken from Franz diffusion cells and analysed by ultraviolet spectrophotometry also produced smooth diffusion profiles. Erratic and higher diffusion profiles were observed with samples taken from the European Pharmacopoeia diffusion cell and analysed by ultraviolet spectrophotometry. The choice of diffusion cells and analytical procedure in product development must be weighed against the relatively poor reproducibility as observed with the European Pharmacopoeia diffusion cell.
- Full Text:
- Date Issued: 2005