Controls of lateral and vertical variations in the geochemistry of the Hotazel Fe-Mn Formation at Nchwaning and Gloria mines, Kalahari Manganese Field, South Africa
- Authors: Dorbor Jr., Stephen Baysah
- Date: 2023-10-13
- Subjects: Manganese ores Geology South Africa , Iron ores Geology South Africa , Geochemistry Geology South Africa , Kalahari manganese field , Banded iron formation , Hotazel mine
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424621 , vital:72169
- Description: The Paleoproterozoic Kalahari manganese field (KMF) in the Northern Cape Province, South Africa, hosts a large resource of manganese ores that has been of great interest over many decades. The Kalahari Manganese deposit (KMD), which is the largest of five erosional relics of the Hotazel Formation in the KMF, hosts three beds of Mn ores with alternating layers of banded iron formation (BIF) and hematite lutite. These three rock types are all evaluated for their mineralogy and geochemistry in this study, with emphasis on lateral and vertical distributions across the Gloria and Nchwaning Mines in the northernmost KMF, an area of high-grade, hydrothermally altered Mn mineralisation. The Mn ores of the Hotazel formation are traditionally categorised into two types. The carbonate-rich low Mn grade (Mn≤40 wt. %) ores (Mamatwan-type) domninates the largest part of the KMD, while carbonate-free, high Mn grade (Mn≥ 45 wt.%) ore (Wessels-type) occurs in the northernmost KMD. The Wessels-type ores are considered as the hydrothermally altered product of Mamatwan-type ores, and as indicated above, are the focus of this study. Five drill cores containing Wessels-type ores from the Nchwaning and Gloria area of the northern KMD were analysed to help understand the petrographic and particularly the geochemical variations in the Hotazel Fe-Mn Formation, both laterally for a given Mn layer of the three, and vertically across Mn layers as captured in specific drillcores. Petrographic and whole-rock geochemical results obtained from the three rock types of the Hotazel Formation show variations in their mineralogical and geochemical compositions, especially in the high-grade Mn ores themselves. Most of the samples of the BIFs layers are dominated by hematite and chert occurring in banded fashion, which is typical of a normal carbonate-free altered BIF discussed in this thesis. The BIFs can also be locally enriched in hematite (ferruginised), occurring as massive hematite ores usually at the top of the stratigraphic profiles. The presence of aegirine-rich assemblages is also noted occurring in some of the BIF and hematite lutite sections immediately above and below the Mn ore beds. The high-grade Mn ore beds vary greatly in mineralogy and texture of the ores laterally and even within a single drill core. In an extreme case, a single drillcore sampled from the Gloria mine (GL57) contains high-grade Wessels-type ore in the upper Mn bed and low-grade, Mamatwan-type ore in the lower Mn layer. Geochemically, the Mn ore bodies also show substantial geochemical variability, although a net increase in the Mn grade downward is usually characterised by a corresponding depletion in mainly bulk Ca, Si and carbonate. However, the Fe content appears to be consistently higher in the upper ore bodies of the drillcores than the lower ones, and the increase in the concentration of the Fe-oxide expectedly causes a relative decrease in the bulk Mn-oxide concentration, usually expressed as an antithetic relationship between the two elements. In terms of trace element distributions, this appears to be more significant in the Mn ores than the other two rock types affected by the same alteration process, probably due to the presence of Mn phases such as hausmannite and braunite serving as good hosts to several trace elements. Cu, Zn, Pb and to a lesser extent Mo are trace metals that appear to show elevated concentration levels (net enrichments) in high-grade Mn ore by comparison to the presumed Mamatwan-type protolith. Ba is an additional element of clear enrichment, manifested mainly as the mineral barite. The Northern KMD has a complex post-depositional history, which includes the intrusion of NE-SW-trending dykes, formation of the Mapedi/Gamagara erosional unconformity, normal faulting associated with the Wessels event and major thrust faults in the western part of the northern KMD. These structural events all have the potential to have contributed to the alteration and subsequent enrichment of the Mn ores in the Nchwaning and Gloria area. As such, the mineralogical, textural, and geochemical variations observed here can tentatively be attributed to the different structural features in the northern KMD. Classic interpretations suggest that normal N-S-trending fault structures have acted as fluid conduits for hydrothermal fluids, which led to the metasomatic alteration of the Mn ore body laterally. Drill cores proximal to and evidently affected by fault-controlled alteration in the SE and SW-portions of the Nchwaning area, have comparable mineralogical and geochemical characteristics for both ore bodies (upper and lower) with subdued alteration effects from the unconformed contact above. Fluids associated with the Mapedi/Gamagara unconformity, would have percolated down-stratigraphy causing oxidative ferruginisation, which led to the formation of massive hematite ores in the top BIF layers and ferruginised Mn ores in the Mn ore beds. This alteration effect appears more prominent in a drill core from the northern part of the study area where the unconformity contact appears more proximal to the upper Mn bed. Drill cores located in the western part of the Nchwaning area seem to also capture evidence of fluid alteration with enrichment in Na recorded in the local abundance of the mineral aegirine. Finally, the dyke structures appear to have acted as impermeable fluid barriers to both lateral and possibly down-dip fluid-flow. , Thesis (MSc) -- Faculty of Science, Geology, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Dorbor Jr., Stephen Baysah
- Date: 2023-10-13
- Subjects: Manganese ores Geology South Africa , Iron ores Geology South Africa , Geochemistry Geology South Africa , Kalahari manganese field , Banded iron formation , Hotazel mine
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424621 , vital:72169
- Description: The Paleoproterozoic Kalahari manganese field (KMF) in the Northern Cape Province, South Africa, hosts a large resource of manganese ores that has been of great interest over many decades. The Kalahari Manganese deposit (KMD), which is the largest of five erosional relics of the Hotazel Formation in the KMF, hosts three beds of Mn ores with alternating layers of banded iron formation (BIF) and hematite lutite. These three rock types are all evaluated for their mineralogy and geochemistry in this study, with emphasis on lateral and vertical distributions across the Gloria and Nchwaning Mines in the northernmost KMF, an area of high-grade, hydrothermally altered Mn mineralisation. The Mn ores of the Hotazel formation are traditionally categorised into two types. The carbonate-rich low Mn grade (Mn≤40 wt. %) ores (Mamatwan-type) domninates the largest part of the KMD, while carbonate-free, high Mn grade (Mn≥ 45 wt.%) ore (Wessels-type) occurs in the northernmost KMD. The Wessels-type ores are considered as the hydrothermally altered product of Mamatwan-type ores, and as indicated above, are the focus of this study. Five drill cores containing Wessels-type ores from the Nchwaning and Gloria area of the northern KMD were analysed to help understand the petrographic and particularly the geochemical variations in the Hotazel Fe-Mn Formation, both laterally for a given Mn layer of the three, and vertically across Mn layers as captured in specific drillcores. Petrographic and whole-rock geochemical results obtained from the three rock types of the Hotazel Formation show variations in their mineralogical and geochemical compositions, especially in the high-grade Mn ores themselves. Most of the samples of the BIFs layers are dominated by hematite and chert occurring in banded fashion, which is typical of a normal carbonate-free altered BIF discussed in this thesis. The BIFs can also be locally enriched in hematite (ferruginised), occurring as massive hematite ores usually at the top of the stratigraphic profiles. The presence of aegirine-rich assemblages is also noted occurring in some of the BIF and hematite lutite sections immediately above and below the Mn ore beds. The high-grade Mn ore beds vary greatly in mineralogy and texture of the ores laterally and even within a single drill core. In an extreme case, a single drillcore sampled from the Gloria mine (GL57) contains high-grade Wessels-type ore in the upper Mn bed and low-grade, Mamatwan-type ore in the lower Mn layer. Geochemically, the Mn ore bodies also show substantial geochemical variability, although a net increase in the Mn grade downward is usually characterised by a corresponding depletion in mainly bulk Ca, Si and carbonate. However, the Fe content appears to be consistently higher in the upper ore bodies of the drillcores than the lower ones, and the increase in the concentration of the Fe-oxide expectedly causes a relative decrease in the bulk Mn-oxide concentration, usually expressed as an antithetic relationship between the two elements. In terms of trace element distributions, this appears to be more significant in the Mn ores than the other two rock types affected by the same alteration process, probably due to the presence of Mn phases such as hausmannite and braunite serving as good hosts to several trace elements. Cu, Zn, Pb and to a lesser extent Mo are trace metals that appear to show elevated concentration levels (net enrichments) in high-grade Mn ore by comparison to the presumed Mamatwan-type protolith. Ba is an additional element of clear enrichment, manifested mainly as the mineral barite. The Northern KMD has a complex post-depositional history, which includes the intrusion of NE-SW-trending dykes, formation of the Mapedi/Gamagara erosional unconformity, normal faulting associated with the Wessels event and major thrust faults in the western part of the northern KMD. These structural events all have the potential to have contributed to the alteration and subsequent enrichment of the Mn ores in the Nchwaning and Gloria area. As such, the mineralogical, textural, and geochemical variations observed here can tentatively be attributed to the different structural features in the northern KMD. Classic interpretations suggest that normal N-S-trending fault structures have acted as fluid conduits for hydrothermal fluids, which led to the metasomatic alteration of the Mn ore body laterally. Drill cores proximal to and evidently affected by fault-controlled alteration in the SE and SW-portions of the Nchwaning area, have comparable mineralogical and geochemical characteristics for both ore bodies (upper and lower) with subdued alteration effects from the unconformed contact above. Fluids associated with the Mapedi/Gamagara unconformity, would have percolated down-stratigraphy causing oxidative ferruginisation, which led to the formation of massive hematite ores in the top BIF layers and ferruginised Mn ores in the Mn ore beds. This alteration effect appears more prominent in a drill core from the northern part of the study area where the unconformity contact appears more proximal to the upper Mn bed. Drill cores located in the western part of the Nchwaning area seem to also capture evidence of fluid alteration with enrichment in Na recorded in the local abundance of the mineral aegirine. Finally, the dyke structures appear to have acted as impermeable fluid barriers to both lateral and possibly down-dip fluid-flow. , Thesis (MSc) -- Faculty of Science, Geology, 2023
- Full Text:
- Date Issued: 2023-10-13
Chemostratigraphy of the lowermost iron-manganese cycle of the Hotazel Formation, and implications for its primary depositional environment
- Authors: Masoabi, Ntseka Thomas
- Date: 2022-10-14
- Subjects: Chemostratigraphy , Great Oxygenation Event , Manganese ores Geology South Africa Northern Cape , Banded iron formation
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362938 , vital:65376
- Description: The giant Kalahari Manganese Field (KMF), located in the Northern Cape Province, South Africa, comprises approximately half of the world’s manganese resources, estimated at about eight billion tons at grades ranging from 20-48 wt%. The KMF is linked to a period in geological time when the Earth’s atmospheric and oceanic conditions underwent a major transition from oxygen-deficient to oxygen-enriched conditions – an event famously referred to as the Great Oxidation Event (GOE) that occurred around 2.4 Ga. The KMF deposits are hosted in Banded Iron Formation (BIF) of the Paleoproterozoic Hotazel Formation in the uppermost Transvaal Supergroup. The sedimentary Mn ores are interbedded with Hotazel BIF in the form of three alternating depositional cycles of BIF, transitional hematite lutite and laminated, carbonate-rich manganese ore. The lowermost and thickest of the three cycles is the most economically significant and has been mined for several decades on a large scale from the southernmost KMF. In this study, two drill cores from the southern KMF were inspected, logged and sampled at a high resolution of approximately half-meter interval per sample. The selected cores, namely G774, capturing the lower portion of the Hotazel Formation from the Mamatwan locality, and MP-56, capturing the corresponding portion from the Middleplaats locality, are geographically proximal to each other, with a horizontal distance of roughly 3 km separating the two of them. The G774 drill core is characterized by a conspicuously thick manganese layer covering a thickness of 50 m, with the overlying BIF reaching a total thickness of 11 m. The MP-56 drill core, on the other hand, has a relatively thinner corresponding manganese layer of 30 m in thickness, while the overlying BIF layer exhibits a thickness of 24 m. The extent of sampling up-section was constrained by an apparently coeval black shale layer which represents the chosen upper stratigraphic marker for the lower part of the Hotazel section in the broader area that is under investigation in this thesis. That way, a high resolution chemostratigraphic approach was employed to elucidate the potential factors contributing to the relative sedimentary lateral thickness variations seen across the southernmost KMF. High-resolution geochemical data were used to explore relationships and signals that might constrain relative precipitation rates for iron and manganese against detrital species, fluctuating redox conditions in the original environment of deposition, and chemostratigraphic correlation. All geochemical data (i.e., major oxides, minor and trace elements and carbonate carbon isotopes) were obtained respectively through employing X-ray Fluorescence (XRF), Laser Ablation Inductively Coupled Mass Spectrometry (ICP-MS), and Gas-source mass spectrometry. Comparative considerations made between the bulk geochemistry of the two sequences (i.e., Mamatwan and Middleplaats sections) reveal that periods of high-Mn deposition in the Hotazel Formation appear to be very Ca-carbonate rich (as indicated by high CaO, LOI and Sr concentrations). This, in turn, suggests that the Mn abundance is in the Hotazel ores is controlled mainly by the silicate phase braunite and is diluted by the deposition of Ca-carbonate through time. Bulk-rock concentration results for trace elements of the High Field Strength Element (HFSE) group (namely Zr, Hf, Y, Nb and Sc) were utilized to constrain the rates of either clastic and/or volcanic detrital inputs, as they traditionally represent refractory mineral particles of a common detrital/volcanic origin. The two chemosedimentary sequences preserve these elements in very low and thus quantitatively negligible concentrations – suggesting that the Hotazel depositional environment received very low and insignificant influx of a terrigeneous detrital component. A selection of these elements was therefore used to deduce, with caution, the relative as opposed to absolute precipitation rate of the major chemical constituents (i.e., Fe + Si vs Mn + carbonate), assuming a constant detrital flux through time. It was found that the relative abundances of Zr, Y and Nb is roughly 1.5 – 2 times as high in the BIF lithofacies relative to the Mn ones at both localities. This led to the inference that the Mn-enriched portion of the sediment must have been deposited at approximately twice the rate that the Fe-rich (BIF) portion was originally deposited. In terms of redox-sensitive elements, the elements Co and Mo seem to reveal the most valuable insights into the redox environment of primary chemical deposition. Cobalt displays a unique pattern in that its highest concentration is attained at the hematite lutite transitions (similarly with the REE in this regard), while very low and seemingly invariant concentration is exhibited within the core of the main orebodies. The same pattern seems to be reproduced to a degree by the corresponding bulk MgO component, whereby MgO abundance maxima are associated with the basal hematite lutite and the hematitic flanks of the Mn-ore zone, while the core of the Mn-rich layer attains relatively low and essentially invariant MgO concentrations. This implicates a close and direct association of Co with the hematite fraction of the rocks and a concurrent enrichment in Mn-rich carbonate (dolomite). On the other hand, Mo seems to have a direct and clear association with peak MnO2 content of the rocks, which in turn presents a high possibility of Mo having adsorbed onto primary Mn-oxyhydroxides in the water column, thus providing evidence that Mn-oxide must have acted as an important Mo sink, at least locally. Finally, the carbonate-carbon isotope results provide a useful tool that brings the two stratigraphic sections “together“, in conjunction with other correlatable chemostratigraphic parameters (e.g. Co, Mg). The results demonstrate that bulk carbon fluxes and isotopic signals in the sediments must reflect primary processes of deposition, and that correlation across two apparently disparate lithostratigraphic sections can be effected. The key finding is that, at times, manganese deposition in one part of a vii stratified basin was evidently accompanied by simultaneous BIF deposition at another, thus painting a very complex picture of massive primary chemical precipitation of Fe and Mn at the dawn of the GOE. , Thesis (MSc) -- Faculty of Science, Geology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Masoabi, Ntseka Thomas
- Date: 2022-10-14
- Subjects: Chemostratigraphy , Great Oxygenation Event , Manganese ores Geology South Africa Northern Cape , Banded iron formation
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362938 , vital:65376
- Description: The giant Kalahari Manganese Field (KMF), located in the Northern Cape Province, South Africa, comprises approximately half of the world’s manganese resources, estimated at about eight billion tons at grades ranging from 20-48 wt%. The KMF is linked to a period in geological time when the Earth’s atmospheric and oceanic conditions underwent a major transition from oxygen-deficient to oxygen-enriched conditions – an event famously referred to as the Great Oxidation Event (GOE) that occurred around 2.4 Ga. The KMF deposits are hosted in Banded Iron Formation (BIF) of the Paleoproterozoic Hotazel Formation in the uppermost Transvaal Supergroup. The sedimentary Mn ores are interbedded with Hotazel BIF in the form of three alternating depositional cycles of BIF, transitional hematite lutite and laminated, carbonate-rich manganese ore. The lowermost and thickest of the three cycles is the most economically significant and has been mined for several decades on a large scale from the southernmost KMF. In this study, two drill cores from the southern KMF were inspected, logged and sampled at a high resolution of approximately half-meter interval per sample. The selected cores, namely G774, capturing the lower portion of the Hotazel Formation from the Mamatwan locality, and MP-56, capturing the corresponding portion from the Middleplaats locality, are geographically proximal to each other, with a horizontal distance of roughly 3 km separating the two of them. The G774 drill core is characterized by a conspicuously thick manganese layer covering a thickness of 50 m, with the overlying BIF reaching a total thickness of 11 m. The MP-56 drill core, on the other hand, has a relatively thinner corresponding manganese layer of 30 m in thickness, while the overlying BIF layer exhibits a thickness of 24 m. The extent of sampling up-section was constrained by an apparently coeval black shale layer which represents the chosen upper stratigraphic marker for the lower part of the Hotazel section in the broader area that is under investigation in this thesis. That way, a high resolution chemostratigraphic approach was employed to elucidate the potential factors contributing to the relative sedimentary lateral thickness variations seen across the southernmost KMF. High-resolution geochemical data were used to explore relationships and signals that might constrain relative precipitation rates for iron and manganese against detrital species, fluctuating redox conditions in the original environment of deposition, and chemostratigraphic correlation. All geochemical data (i.e., major oxides, minor and trace elements and carbonate carbon isotopes) were obtained respectively through employing X-ray Fluorescence (XRF), Laser Ablation Inductively Coupled Mass Spectrometry (ICP-MS), and Gas-source mass spectrometry. Comparative considerations made between the bulk geochemistry of the two sequences (i.e., Mamatwan and Middleplaats sections) reveal that periods of high-Mn deposition in the Hotazel Formation appear to be very Ca-carbonate rich (as indicated by high CaO, LOI and Sr concentrations). This, in turn, suggests that the Mn abundance is in the Hotazel ores is controlled mainly by the silicate phase braunite and is diluted by the deposition of Ca-carbonate through time. Bulk-rock concentration results for trace elements of the High Field Strength Element (HFSE) group (namely Zr, Hf, Y, Nb and Sc) were utilized to constrain the rates of either clastic and/or volcanic detrital inputs, as they traditionally represent refractory mineral particles of a common detrital/volcanic origin. The two chemosedimentary sequences preserve these elements in very low and thus quantitatively negligible concentrations – suggesting that the Hotazel depositional environment received very low and insignificant influx of a terrigeneous detrital component. A selection of these elements was therefore used to deduce, with caution, the relative as opposed to absolute precipitation rate of the major chemical constituents (i.e., Fe + Si vs Mn + carbonate), assuming a constant detrital flux through time. It was found that the relative abundances of Zr, Y and Nb is roughly 1.5 – 2 times as high in the BIF lithofacies relative to the Mn ones at both localities. This led to the inference that the Mn-enriched portion of the sediment must have been deposited at approximately twice the rate that the Fe-rich (BIF) portion was originally deposited. In terms of redox-sensitive elements, the elements Co and Mo seem to reveal the most valuable insights into the redox environment of primary chemical deposition. Cobalt displays a unique pattern in that its highest concentration is attained at the hematite lutite transitions (similarly with the REE in this regard), while very low and seemingly invariant concentration is exhibited within the core of the main orebodies. The same pattern seems to be reproduced to a degree by the corresponding bulk MgO component, whereby MgO abundance maxima are associated with the basal hematite lutite and the hematitic flanks of the Mn-ore zone, while the core of the Mn-rich layer attains relatively low and essentially invariant MgO concentrations. This implicates a close and direct association of Co with the hematite fraction of the rocks and a concurrent enrichment in Mn-rich carbonate (dolomite). On the other hand, Mo seems to have a direct and clear association with peak MnO2 content of the rocks, which in turn presents a high possibility of Mo having adsorbed onto primary Mn-oxyhydroxides in the water column, thus providing evidence that Mn-oxide must have acted as an important Mo sink, at least locally. Finally, the carbonate-carbon isotope results provide a useful tool that brings the two stratigraphic sections “together“, in conjunction with other correlatable chemostratigraphic parameters (e.g. Co, Mg). The results demonstrate that bulk carbon fluxes and isotopic signals in the sediments must reflect primary processes of deposition, and that correlation across two apparently disparate lithostratigraphic sections can be effected. The key finding is that, at times, manganese deposition in one part of a vii stratified basin was evidently accompanied by simultaneous BIF deposition at another, thus painting a very complex picture of massive primary chemical precipitation of Fe and Mn at the dawn of the GOE. , Thesis (MSc) -- Faculty of Science, Geology, 2022
- Full Text:
- Date Issued: 2022-10-14
Mineralogical and geochemical constraints on the origin, alteration history and metallogenic significance of the Manganore iron-formation, Northern Cape Province, South Africa
- Authors: Papadopoulos, Vlassis
- Date: 2017
- Subjects: Banded iron formation , Transvaal Supergroup (South Africa) , Groups (Stratigraphy) South Africa , Lithostratigraphy , Petrology South Africa , Geochemistry South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/65189 , vital:28702
- Description: The Manganore iron-formation (MIF) of the Transvaal Supergroup is host to the most important high-grade iron ore bodies in South Africa. Prevailing models for ore genesis invoke supergene processes performing during a long period of erosion, oxidation and weathering under tropical lateritic conditions while the role of potential hydrothermal processes is not addressed. Lack of detailed petrographical and geochemical data necessitated reexamination of the MIF through new and existing drill core exploration material. Thorough petrographical investigation revealed a multi-event complex alteration history involving hydrothermal activity. Iron and silica mobility during alteration is demonstrated by a series of replacement, overprinting, crosscutting textures, extensive silicification and hematitization. Metasomatized textures such as pseudomorphs of primary magnetite, carbonate minerals and chert pods/lenses point to an alteration occurring in layer- controlled fronts and link stratigraphically the MIF to Kuruman and Griquatown iron- formations. Whole-rock geochemical data verify textural observations suggesting strong enrichment of iron or silica in meter-scale horizons, expressed by different generations of quartz and hematite. High-grade iron ore is highly enriched in TiO2 and Al2O3 compared to the protolith while both BIF and iron ore display highly increased concentrations of trace elements (transition metals and HFSE). Oxygen isotopes from different quartz textures reveal little to none isotopic exchangement during alteration whereas O isotopes from hematite are in concert to values from literature and suggest two different generations of hematite. A total of 20 minerals apart from quartz and hematite were documented. An earlier alkali/HFSE alteration event that is believed to have affected the overlying Gamagara shales is recorded in the BIF by the presence of muscovite, apatite, rutile, zircon and xenotime. A later and possibly ongoing event of succeeding hydrothermal pulses involves mainly sulphates (gypsum, baryte, celestine), pyrite, carbonates (siderite, calcite) and silicates (berthierine and tourmaline). Alkali-bearing brines persistently exploit the BIF mainly through karstification-related secondary porosity, are evidently carrying iron and are proposed to participate in or control the iron enrichment by facilitating removal of silica. The source of metals, sulfur and carbon is attributed to the underlying Campbellrand dolomites and especially to the upper Gamogaan Formation. The unconformable contact between BIF and the overlying shales is suggested as a suitable fluid conduit for the development of the observed BIF and shale-derived high-grade hematite iron ore.
- Full Text:
- Date Issued: 2017
- Authors: Papadopoulos, Vlassis
- Date: 2017
- Subjects: Banded iron formation , Transvaal Supergroup (South Africa) , Groups (Stratigraphy) South Africa , Lithostratigraphy , Petrology South Africa , Geochemistry South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/65189 , vital:28702
- Description: The Manganore iron-formation (MIF) of the Transvaal Supergroup is host to the most important high-grade iron ore bodies in South Africa. Prevailing models for ore genesis invoke supergene processes performing during a long period of erosion, oxidation and weathering under tropical lateritic conditions while the role of potential hydrothermal processes is not addressed. Lack of detailed petrographical and geochemical data necessitated reexamination of the MIF through new and existing drill core exploration material. Thorough petrographical investigation revealed a multi-event complex alteration history involving hydrothermal activity. Iron and silica mobility during alteration is demonstrated by a series of replacement, overprinting, crosscutting textures, extensive silicification and hematitization. Metasomatized textures such as pseudomorphs of primary magnetite, carbonate minerals and chert pods/lenses point to an alteration occurring in layer- controlled fronts and link stratigraphically the MIF to Kuruman and Griquatown iron- formations. Whole-rock geochemical data verify textural observations suggesting strong enrichment of iron or silica in meter-scale horizons, expressed by different generations of quartz and hematite. High-grade iron ore is highly enriched in TiO2 and Al2O3 compared to the protolith while both BIF and iron ore display highly increased concentrations of trace elements (transition metals and HFSE). Oxygen isotopes from different quartz textures reveal little to none isotopic exchangement during alteration whereas O isotopes from hematite are in concert to values from literature and suggest two different generations of hematite. A total of 20 minerals apart from quartz and hematite were documented. An earlier alkali/HFSE alteration event that is believed to have affected the overlying Gamagara shales is recorded in the BIF by the presence of muscovite, apatite, rutile, zircon and xenotime. A later and possibly ongoing event of succeeding hydrothermal pulses involves mainly sulphates (gypsum, baryte, celestine), pyrite, carbonates (siderite, calcite) and silicates (berthierine and tourmaline). Alkali-bearing brines persistently exploit the BIF mainly through karstification-related secondary porosity, are evidently carrying iron and are proposed to participate in or control the iron enrichment by facilitating removal of silica. The source of metals, sulfur and carbon is attributed to the underlying Campbellrand dolomites and especially to the upper Gamogaan Formation. The unconformable contact between BIF and the overlying shales is suggested as a suitable fluid conduit for the development of the observed BIF and shale-derived high-grade hematite iron ore.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »