Characterization and computer simulation of corn stover/coal blends for co-gasification in a downdraft gasifier
- Authors: Mabizela, Polycarp Sbusiso
- Date: 2014
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11600 , http://hdl.handle.net/10353/d1020203
- Description: The need for sustainable alternative energy technology is becoming more urgent as the demand for clean energy environment increases. For centuries, electricity in South Africa has been derived mostly from coal with results growing in multifold annually due to concerns about the impact of fossil fuel utilization related to emission of greenhouse gasses. It is practically impossible at the moment to replace coal with biomass resources because of the low energy value of biomass. However, the conversion of coal has experienced some challenges especially during its gasification which includes, but are not limited to a high reaction temperature exceeding 900°C which most gasifiers cannot achieve, and if achieved in most cases, combustion of the resulting syngas usually occur, leading to low conversion efficiency and the risk of reaching extremely high temperatures that may result in pressure build up and explosion may also occur. Therefore, this study sought to investigate the possibility of co-gasifying corn stover with coal with the ultimate aim establishing the best mixing ratio that would result in optimum co-gasification efficiency after computer simulation. Proximate and ultimate analysis, including energy values of corn stover and coal as well as their blends were undertaken and results showed significant differences between the two feedstocks and narrow range composition betwee their blends in terms of properties and energy value. Corn stover showed a higher fraction of volatile matter and lower ash content than coal, whereas those of their blends vary considerably in terms of physical properties. Differences in chemical composition also showed higher fraction of hydrogen and oxygen, and less carbon than coal while those of their blends vary according to the ratio of corn stover to coal and vice versa in the blends. The thermal stability of corn stover and coal as well as their blends were also established and the maximum temperature reached for thermal degradation of their blends was 900°C as depicted by TGA analysis. The SEM results revealed no changes in morphology of the pure samples of corn stover and coal which was due to the fact that a pre-treatment of the samples were not undertaken, whereas the blends showed significant changes in morphology as a result of blending. However, luminous and non-luminous features were noticed in both SEM images of the blends with the 10% coal/90% corn stover blend having higher percentages of luminosity as a result of higher quantities of coal in the blend. The energy density of the samples were also measured and found to be 16.1 MJ/kg and 22.8 MJ/kg for corn stover and coal respectively. Those of their blends varied from 16.9 to approximately 23.5 MJ/kg. These results were used to conduct computer simulation of the co-gasification process in order to establish the best blend that would result in maximum co-gasification efficiency. The blend 90% corn stover/10% coal was found to be the most suitable blend for co-gasification resulting in an efficiency of approximately 58% because its conversion was efficiently achieved at a temperature that is intermediate to that of coal and biomass independently. The simulation results were, however, compared with experimental data found in the literature and results showed only slight variation between them.
- Full Text:
- Date Issued: 2014
- Authors: Mabizela, Polycarp Sbusiso
- Date: 2014
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11600 , http://hdl.handle.net/10353/d1020203
- Description: The need for sustainable alternative energy technology is becoming more urgent as the demand for clean energy environment increases. For centuries, electricity in South Africa has been derived mostly from coal with results growing in multifold annually due to concerns about the impact of fossil fuel utilization related to emission of greenhouse gasses. It is practically impossible at the moment to replace coal with biomass resources because of the low energy value of biomass. However, the conversion of coal has experienced some challenges especially during its gasification which includes, but are not limited to a high reaction temperature exceeding 900°C which most gasifiers cannot achieve, and if achieved in most cases, combustion of the resulting syngas usually occur, leading to low conversion efficiency and the risk of reaching extremely high temperatures that may result in pressure build up and explosion may also occur. Therefore, this study sought to investigate the possibility of co-gasifying corn stover with coal with the ultimate aim establishing the best mixing ratio that would result in optimum co-gasification efficiency after computer simulation. Proximate and ultimate analysis, including energy values of corn stover and coal as well as their blends were undertaken and results showed significant differences between the two feedstocks and narrow range composition betwee their blends in terms of properties and energy value. Corn stover showed a higher fraction of volatile matter and lower ash content than coal, whereas those of their blends vary considerably in terms of physical properties. Differences in chemical composition also showed higher fraction of hydrogen and oxygen, and less carbon than coal while those of their blends vary according to the ratio of corn stover to coal and vice versa in the blends. The thermal stability of corn stover and coal as well as their blends were also established and the maximum temperature reached for thermal degradation of their blends was 900°C as depicted by TGA analysis. The SEM results revealed no changes in morphology of the pure samples of corn stover and coal which was due to the fact that a pre-treatment of the samples were not undertaken, whereas the blends showed significant changes in morphology as a result of blending. However, luminous and non-luminous features were noticed in both SEM images of the blends with the 10% coal/90% corn stover blend having higher percentages of luminosity as a result of higher quantities of coal in the blend. The energy density of the samples were also measured and found to be 16.1 MJ/kg and 22.8 MJ/kg for corn stover and coal respectively. Those of their blends varied from 16.9 to approximately 23.5 MJ/kg. These results were used to conduct computer simulation of the co-gasification process in order to establish the best blend that would result in maximum co-gasification efficiency. The blend 90% corn stover/10% coal was found to be the most suitable blend for co-gasification resulting in an efficiency of approximately 58% because its conversion was efficiently achieved at a temperature that is intermediate to that of coal and biomass independently. The simulation results were, however, compared with experimental data found in the literature and results showed only slight variation between them.
- Full Text:
- Date Issued: 2014
Electing high-order modes in solid state laser resonators
- Authors: Iheanetu, Kelachukwu
- Date: 2014
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: http://hdl.handle.net/10353/995 , vital:26516
- Description: The first chapter considered the fundamental processes of laser operation: photon absorption, spontaneous and stimulated emissions. These processes are considered when designing a laser gain medium. A four-level laser scheme was also illustrated. Then, the basic components and operating principle of a simple laser system was presented using a diode end-pumped Nd:YAG solid state laser resonator. The second chapter considered laser light as light rays propagating in the resonator and extensively discussed the oscillating field in the laser resonators. It examined the characteristics of the fundamental Gaussian mode and the same theory was applied to higher-order modes. Chapter three started with an introduction to beam shaping and proceeded to present a review of some intra-cavity beam shaping techniques, the use of; graded phase mirrors, difractive elements { binary phase elements and spiral phase elements. Also, a brief discussion was given on the concept of conventional holography and digital holography. The phase-only spatial light modulator (SLM) was presented, which by default is used to perform (only) phase modulation of optical fields and how it can be use to perform amplitude modulation also. Finally, a detailed discussion of the digital laser which uses the intracavity SLM as a mode selection element was presented, since it was the technique used in the experiment. The elegance of dynamic on-demand mode selection that required only a change of the grey-scale hologram on the SLM was one quality that was exploited in using the digital laser. The next two chapters presented the experiments and results. The concept of the digital laser was first used in the experiment in chapter four, to assemble a stable diode endpumped Nd:YAG solid state laser resonator. Basically, the cavity was of hemispherical configuration using an intra-cavity SLM (virtual concave mirror) as a back re ector and a at mirror output coupler. A virtual concave mirror was achieve on the SLM by using phase modulation to generate the hologram of a lens, which when displayed on the SLM made it to mimic a concave mirror. Then the next phase was using symmetric Laguerre-Gaussian mode function, of zero azimuthal order to generate digital holograms that correspond to amplitude absorbing concentric rings. These holograms, combined with the hologram that iv mimics a concave mirror were used on the SLM to perform high-order Laguerre-Gaussian modes selection in the cavity. The fifth chapter presented the results of the mode selection and considered the purity of the beam at the output coupler by comparing measured modal properties with the theoretical prediction. The outcome confirmed that the modes were of high purity and quality which further implied that the cavity was indeed selecting single pure high-order modes. The results also demonstrated that forcing the cavity to oscillate at higher-order modes (p = 3) extracted 74% more power from the gain medium compared to the fundamental mode (p = 0), but this extra power is only accessible beyond a critical pump input power of 38.8 W. Laser brightness describes the potential of a laser beam to achieve high intensities while still maintaining a large Rayleigh range. It is a property that is dependent on beam power and its quality factor. To achieve high brightness one needs to generate a beam that extracts maximum power from the gain with good beam quality. Building on the experiments demonstrated in this study, one can make the correct choices of output coupler's re ectivity, the laser gain medium's length and doping concentration and the pump mode overlap for a particular mode to further enhance energy extraction from the cavity, and then using well known extra-cavity techniques to improve the output beams quality factor by transforming the high-order mode back to the fundamental mode. This will electively achieve higher laser brightness.
- Full Text:
- Date Issued: 2014
- Authors: Iheanetu, Kelachukwu
- Date: 2014
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: http://hdl.handle.net/10353/995 , vital:26516
- Description: The first chapter considered the fundamental processes of laser operation: photon absorption, spontaneous and stimulated emissions. These processes are considered when designing a laser gain medium. A four-level laser scheme was also illustrated. Then, the basic components and operating principle of a simple laser system was presented using a diode end-pumped Nd:YAG solid state laser resonator. The second chapter considered laser light as light rays propagating in the resonator and extensively discussed the oscillating field in the laser resonators. It examined the characteristics of the fundamental Gaussian mode and the same theory was applied to higher-order modes. Chapter three started with an introduction to beam shaping and proceeded to present a review of some intra-cavity beam shaping techniques, the use of; graded phase mirrors, difractive elements { binary phase elements and spiral phase elements. Also, a brief discussion was given on the concept of conventional holography and digital holography. The phase-only spatial light modulator (SLM) was presented, which by default is used to perform (only) phase modulation of optical fields and how it can be use to perform amplitude modulation also. Finally, a detailed discussion of the digital laser which uses the intracavity SLM as a mode selection element was presented, since it was the technique used in the experiment. The elegance of dynamic on-demand mode selection that required only a change of the grey-scale hologram on the SLM was one quality that was exploited in using the digital laser. The next two chapters presented the experiments and results. The concept of the digital laser was first used in the experiment in chapter four, to assemble a stable diode endpumped Nd:YAG solid state laser resonator. Basically, the cavity was of hemispherical configuration using an intra-cavity SLM (virtual concave mirror) as a back re ector and a at mirror output coupler. A virtual concave mirror was achieve on the SLM by using phase modulation to generate the hologram of a lens, which when displayed on the SLM made it to mimic a concave mirror. Then the next phase was using symmetric Laguerre-Gaussian mode function, of zero azimuthal order to generate digital holograms that correspond to amplitude absorbing concentric rings. These holograms, combined with the hologram that iv mimics a concave mirror were used on the SLM to perform high-order Laguerre-Gaussian modes selection in the cavity. The fifth chapter presented the results of the mode selection and considered the purity of the beam at the output coupler by comparing measured modal properties with the theoretical prediction. The outcome confirmed that the modes were of high purity and quality which further implied that the cavity was indeed selecting single pure high-order modes. The results also demonstrated that forcing the cavity to oscillate at higher-order modes (p = 3) extracted 74% more power from the gain medium compared to the fundamental mode (p = 0), but this extra power is only accessible beyond a critical pump input power of 38.8 W. Laser brightness describes the potential of a laser beam to achieve high intensities while still maintaining a large Rayleigh range. It is a property that is dependent on beam power and its quality factor. To achieve high brightness one needs to generate a beam that extracts maximum power from the gain with good beam quality. Building on the experiments demonstrated in this study, one can make the correct choices of output coupler's re ectivity, the laser gain medium's length and doping concentration and the pump mode overlap for a particular mode to further enhance energy extraction from the cavity, and then using well known extra-cavity techniques to improve the output beams quality factor by transforming the high-order mode back to the fundamental mode. This will electively achieve higher laser brightness.
- Full Text:
- Date Issued: 2014
Impact of translucent water-based acrylic paint on the thermal performance of a low cost house
- Authors: Overen, Ochuko Kelvin
- Date: 2014
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11598 , http://hdl.handle.net/10353/d1019777
- Description: Insulation materials are selected based on their R-value, which is a measure of the thermal resistance of a material. Therefore, the higher the R-value of a material, the better its thermal insulation performance. There are two major groups of insulation materials: bulk and reflective insulation (or combine bulk and reflective). Bulk insulation is design to resist heat transfer due to conduction and convection. Reflective insulation resists radiant heat flow due to its high reflectivity and low emissivity. Insulation materials are not restricted to these materials only. Other low thermal conductive materials can be used as long as the primary aim of thermal insulation, which is increasing thermal resistance, is achieved. Hence, the aim of the project is to investigate the insulation ability of Translucent Water-based Acrylic Paint (TWAP) on the thermal performance of Low Cost Housing (LCH). To achieve the aim of the study, the inner surfaces of the external walls of LCH was coated with TWAP. Before the inner surfaces of the external walls were coated, the following techniques were used to characterised the paint; Scanning Electron Microscopy/ Energy Dispersive X-ray spectroscopy (SEM/EDX), Fourier Transform Infra-Red (FTIR) and IR thermography. SEM/EDX was adapted to view the surface morphology and to detect the elemental composition responsible for the thermal resistance of the TWAP. FTIR spectroscopy was used to determine the functional group and organic molecular composition of the paint. The heat resistance of TWAP was analyzed using IR thermography technique. A low cost house located in the Golf Course settlement in Alice, Eastern Cape, South Africa under the Nkonkobe Municipality Eastern Cape was used as a case study in this research. The house is facing geographical N16°E, It comprises a bedroom, toilet and an open plan living room and kitchen. The house has a floor dimension of 7.20 m x 5.70 m, giving an approximate area of 41 m2. The roof is made of galvanized corrugated iron sheets with no ceiling or any form of roof insulation. The walls of the buildings are made of the M6 (0.39 m 0.19 m x 0.14 m) hollow concrete blocks, with no plaster or insulation. The following meteorological parameters were measured: temperature, relative humidity, solar irradiance, wind speed and wind direction. Eleven type-K thermocouples were used to measure the indoor temperature, inner and outer surfaces temperature of the building walls. Two sets of HMP50 humidity sensors were used to measure the indoor and outdoor relative humidity as well as the ambient temperature. The indoor temperature and relative humidity were measured at a height of 1.80 m so as to have good indoor parameter variation patterns that are not influenced by the roof temperature. The outdoor relative humidity sensor together with a 03001 wind sentry anemometer/vane and Li-Cor pyranometer were installed at a height of 0.44 m above the roof of the building. Wind speed and direction were measured by the 03001 wind sentry anemometer/vane, while solar radiation was measured by the Li-Cor pyranometer. The entire set of sensors was connected to a CR1000 data logger from which data are stored and retrieved following a setup program.
- Full Text:
- Date Issued: 2014
- Authors: Overen, Ochuko Kelvin
- Date: 2014
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11598 , http://hdl.handle.net/10353/d1019777
- Description: Insulation materials are selected based on their R-value, which is a measure of the thermal resistance of a material. Therefore, the higher the R-value of a material, the better its thermal insulation performance. There are two major groups of insulation materials: bulk and reflective insulation (or combine bulk and reflective). Bulk insulation is design to resist heat transfer due to conduction and convection. Reflective insulation resists radiant heat flow due to its high reflectivity and low emissivity. Insulation materials are not restricted to these materials only. Other low thermal conductive materials can be used as long as the primary aim of thermal insulation, which is increasing thermal resistance, is achieved. Hence, the aim of the project is to investigate the insulation ability of Translucent Water-based Acrylic Paint (TWAP) on the thermal performance of Low Cost Housing (LCH). To achieve the aim of the study, the inner surfaces of the external walls of LCH was coated with TWAP. Before the inner surfaces of the external walls were coated, the following techniques were used to characterised the paint; Scanning Electron Microscopy/ Energy Dispersive X-ray spectroscopy (SEM/EDX), Fourier Transform Infra-Red (FTIR) and IR thermography. SEM/EDX was adapted to view the surface morphology and to detect the elemental composition responsible for the thermal resistance of the TWAP. FTIR spectroscopy was used to determine the functional group and organic molecular composition of the paint. The heat resistance of TWAP was analyzed using IR thermography technique. A low cost house located in the Golf Course settlement in Alice, Eastern Cape, South Africa under the Nkonkobe Municipality Eastern Cape was used as a case study in this research. The house is facing geographical N16°E, It comprises a bedroom, toilet and an open plan living room and kitchen. The house has a floor dimension of 7.20 m x 5.70 m, giving an approximate area of 41 m2. The roof is made of galvanized corrugated iron sheets with no ceiling or any form of roof insulation. The walls of the buildings are made of the M6 (0.39 m 0.19 m x 0.14 m) hollow concrete blocks, with no plaster or insulation. The following meteorological parameters were measured: temperature, relative humidity, solar irradiance, wind speed and wind direction. Eleven type-K thermocouples were used to measure the indoor temperature, inner and outer surfaces temperature of the building walls. Two sets of HMP50 humidity sensors were used to measure the indoor and outdoor relative humidity as well as the ambient temperature. The indoor temperature and relative humidity were measured at a height of 1.80 m so as to have good indoor parameter variation patterns that are not influenced by the roof temperature. The outdoor relative humidity sensor together with a 03001 wind sentry anemometer/vane and Li-Cor pyranometer were installed at a height of 0.44 m above the roof of the building. Wind speed and direction were measured by the 03001 wind sentry anemometer/vane, while solar radiation was measured by the Li-Cor pyranometer. The entire set of sensors was connected to a CR1000 data logger from which data are stored and retrieved following a setup program.
- Full Text:
- Date Issued: 2014
Modelling of the performance of a batch biogas digester fed with selected types of substrates
- Authors: Mukumba, Patrick
- Date: 2013
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11596 , http://hdl.handle.net/10353/d1016197
- Description: The increasing population and the rapid economic growth in South Africa have led to higher consumption of food resulting in the generation of large amounts of waste. In addition, South Africa has plenty of biomass from cattle, donkeys, horses, goats, pigs, chicken and sheep. However, anaerobic digestion could be an alternative solution for the utilization of these kinds of waste due to its environmental and economic benefits. Therefore, the main focus of the research was design, construct a field batch biogas digester, monitor its performance when fed with co-substrates and model the methane yield for an optimized mixing ratio.
- Full Text:
- Date Issued: 2013
- Authors: Mukumba, Patrick
- Date: 2013
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11596 , http://hdl.handle.net/10353/d1016197
- Description: The increasing population and the rapid economic growth in South Africa have led to higher consumption of food resulting in the generation of large amounts of waste. In addition, South Africa has plenty of biomass from cattle, donkeys, horses, goats, pigs, chicken and sheep. However, anaerobic digestion could be an alternative solution for the utilization of these kinds of waste due to its environmental and economic benefits. Therefore, the main focus of the research was design, construct a field batch biogas digester, monitor its performance when fed with co-substrates and model the methane yield for an optimized mixing ratio.
- Full Text:
- Date Issued: 2013
An investigation of the atmospheric wave dynamics in the polar region using ground based instruments
- Authors: Khanyile, Bhekumuzi Sfundo
- Date: 2011
- Subjects: Gravity waves , Atmospheric physics -- South Africa , Riometer , Gravity -- Measurement , Rossby waves
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11592 , http://hdl.handle.net/10353/447 , Gravity waves , Atmospheric physics -- South Africa , Riometer , Gravity -- Measurement , Rossby waves
- Description: Abstract This study presents the characteristics of small-scale gravity waves in the mesosphere region as derived from the imaging riometer data at high altitude (~90 km) over SANAE (72˚S, 3˚W). Wavelet analysis and FFT (Fast Fourier transform) have been applied to extract short period gravity wave parameters for the year 2000. The horizontal wavelength, phase speed and observed period of gravity waves are typically 10-100 km, 5-60 m.s-1 and 3-60 minutes, respectively. The horizontal propagation direction is north-eastward throughout the year. This could probably be due to selective filtering by the zonal wind. Zonal and meridional winds in the region of the MLT (mesosphere and lower thermosphere) have been measured using HF radars at high latitudes in the southern hemisphere. Data from January 2000 to December 2003 have been used with the aim of investigating the characteristics of planetary wave activity at ~90 km. For SANAE and Halley stations, 2-, 5-, 10-, 16- and 20-day planetary waves are dominant in summer and winter. The results show the seasonal variations of the mean winds, which are caused by the internal variability of the quasi stationary planetary waves. Planetary wave coupling processes between UKMO assimilated and mesospheric data have also been investigated. The cross wavelet results show a strong coupling during winter months. The results suggest that planetary waves are generated at lower atmospheric heights and propagate upwards into mesospheric heights. However, not all observed disturbances in mesospheric heights can be explained by the propagation of planetary waves from lower atmospheric heights.
- Full Text:
- Date Issued: 2011
An investigation of the atmospheric wave dynamics in the polar region using ground based instruments
- Authors: Khanyile, Bhekumuzi Sfundo
- Date: 2011
- Subjects: Gravity waves , Atmospheric physics -- South Africa , Riometer , Gravity -- Measurement , Rossby waves
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11592 , http://hdl.handle.net/10353/447 , Gravity waves , Atmospheric physics -- South Africa , Riometer , Gravity -- Measurement , Rossby waves
- Description: Abstract This study presents the characteristics of small-scale gravity waves in the mesosphere region as derived from the imaging riometer data at high altitude (~90 km) over SANAE (72˚S, 3˚W). Wavelet analysis and FFT (Fast Fourier transform) have been applied to extract short period gravity wave parameters for the year 2000. The horizontal wavelength, phase speed and observed period of gravity waves are typically 10-100 km, 5-60 m.s-1 and 3-60 minutes, respectively. The horizontal propagation direction is north-eastward throughout the year. This could probably be due to selective filtering by the zonal wind. Zonal and meridional winds in the region of the MLT (mesosphere and lower thermosphere) have been measured using HF radars at high latitudes in the southern hemisphere. Data from January 2000 to December 2003 have been used with the aim of investigating the characteristics of planetary wave activity at ~90 km. For SANAE and Halley stations, 2-, 5-, 10-, 16- and 20-day planetary waves are dominant in summer and winter. The results show the seasonal variations of the mean winds, which are caused by the internal variability of the quasi stationary planetary waves. Planetary wave coupling processes between UKMO assimilated and mesospheric data have also been investigated. The cross wavelet results show a strong coupling during winter months. The results suggest that planetary waves are generated at lower atmospheric heights and propagate upwards into mesospheric heights. However, not all observed disturbances in mesospheric heights can be explained by the propagation of planetary waves from lower atmospheric heights.
- Full Text:
- Date Issued: 2011
Variability of the peak height of the ionospheric F2 layer over South Africa
- Authors: Mbambo, Makhangela Casey
- Date: 2011
- Subjects: Ionosphere -- South Africa , Ionosphere -- Observations , Ionosphere -- Research , Double layers (Astrophysics)
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11594 , http://hdl.handle.net/10353/446 , Ionosphere -- South Africa , Ionosphere -- Observations , Ionosphere -- Research , Double layers (Astrophysics)
- Description: Abstract This thesis will present an investigation into the variability of the maximum height of the ionospheric F2 layer, hmF2, with hour, season and latitude over the South African region. The dependence of hmF2 on solar and magnetic activity is also investigated. Data from three South African stations, namely Madimbo (22.4 S, 26.5 E), Grahamstown (33.3 S, 26.5 E) and Louisvale (28.5 S, 21.2 E) were used in this study. Initial results indicate that hmF2 shows a larger variability around midnight than during daytime for all the seasons. Monthly median values for hmF2 were used in all cases to illustrate the variability, and the International Reference Ionosphere (IRI) model has been used to investigate hmF2 predictability over South Africa. This research represents the initial steps towards a predictive model for the hmF2 parameter, with the long term aim of developing a new global hmF2 predictive model for the IRI. It is believed that this work will contribute signi cantly towards this aim through the understanding of the hmF2 parameter over a region that has not previously been investigated.
- Full Text:
- Date Issued: 2011
- Authors: Mbambo, Makhangela Casey
- Date: 2011
- Subjects: Ionosphere -- South Africa , Ionosphere -- Observations , Ionosphere -- Research , Double layers (Astrophysics)
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11594 , http://hdl.handle.net/10353/446 , Ionosphere -- South Africa , Ionosphere -- Observations , Ionosphere -- Research , Double layers (Astrophysics)
- Description: Abstract This thesis will present an investigation into the variability of the maximum height of the ionospheric F2 layer, hmF2, with hour, season and latitude over the South African region. The dependence of hmF2 on solar and magnetic activity is also investigated. Data from three South African stations, namely Madimbo (22.4 S, 26.5 E), Grahamstown (33.3 S, 26.5 E) and Louisvale (28.5 S, 21.2 E) were used in this study. Initial results indicate that hmF2 shows a larger variability around midnight than during daytime for all the seasons. Monthly median values for hmF2 were used in all cases to illustrate the variability, and the International Reference Ionosphere (IRI) model has been used to investigate hmF2 predictability over South Africa. This research represents the initial steps towards a predictive model for the hmF2 parameter, with the long term aim of developing a new global hmF2 predictive model for the IRI. It is believed that this work will contribute signi cantly towards this aim through the understanding of the hmF2 parameter over a region that has not previously been investigated.
- Full Text:
- Date Issued: 2011
Efficient rectenna circuits for microwave wireless power transmission
- Authors: Teru, Agboola Awolola
- Date: 2010
- Subjects: Electric power production -- Technological innovations , Integrated circuits -- Design and construction , Electronic circuit design , Semiconductors -- Design and construction
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11590 , http://hdl.handle.net/10353/481 , Electric power production -- Technological innovations , Integrated circuits -- Design and construction , Electronic circuit design , Semiconductors -- Design and construction
- Description: Miniaturisation has been the holy grail of mobile technology. The ability to move around with our gadgets, especially the ones for communication and entertainment, has been what semiconductor scientists have battled over the past decades. Miniaturisation brings about reduced consumption in power and ease of mobility. However, the main impediment to untethered mobility of our gadgets has been the lack of unlimited power supply. The battery had filled this gap for some time, but due to the increased functionalities of these mobile gadgets, increasing the battery capacity would increase the weight of the device considerably that it would eventually become too heavy to carry around. Moreover, the fact that these batteries need to be recharged means we are still not completely free of power cords. The advent of low powered micro-controllers and sensors has created a huge industry for more powerful devices that consume a lot less power. These devices have encouraged hardware designers to reduce the power consumption of the gadgets. This has encouraged the idea of wireless power transmission on another level. With lots of radio frequency energy all around us, from our cordless phones to the numerous mobile cell sites there has not been a better time to delve more into research on WPT. This study looks at the feasibilities of WPT in small device applications where very low power is consumed to carry out some important functionality. The work done here compared two rectifying circuits’ efficiencies and ways to improve on the overall efficiencies. The results obtained show that the full wave rectifier would be the better option when designing a WPT system as more power can be drawn from the rectenna. The load also had a great role as this determined the amount of power drawn from the circuitry.
- Full Text:
- Date Issued: 2010
- Authors: Teru, Agboola Awolola
- Date: 2010
- Subjects: Electric power production -- Technological innovations , Integrated circuits -- Design and construction , Electronic circuit design , Semiconductors -- Design and construction
- Language: English
- Type: Thesis , Masters , MSc (Physics)
- Identifier: vital:11590 , http://hdl.handle.net/10353/481 , Electric power production -- Technological innovations , Integrated circuits -- Design and construction , Electronic circuit design , Semiconductors -- Design and construction
- Description: Miniaturisation has been the holy grail of mobile technology. The ability to move around with our gadgets, especially the ones for communication and entertainment, has been what semiconductor scientists have battled over the past decades. Miniaturisation brings about reduced consumption in power and ease of mobility. However, the main impediment to untethered mobility of our gadgets has been the lack of unlimited power supply. The battery had filled this gap for some time, but due to the increased functionalities of these mobile gadgets, increasing the battery capacity would increase the weight of the device considerably that it would eventually become too heavy to carry around. Moreover, the fact that these batteries need to be recharged means we are still not completely free of power cords. The advent of low powered micro-controllers and sensors has created a huge industry for more powerful devices that consume a lot less power. These devices have encouraged hardware designers to reduce the power consumption of the gadgets. This has encouraged the idea of wireless power transmission on another level. With lots of radio frequency energy all around us, from our cordless phones to the numerous mobile cell sites there has not been a better time to delve more into research on WPT. This study looks at the feasibilities of WPT in small device applications where very low power is consumed to carry out some important functionality. The work done here compared two rectifying circuits’ efficiencies and ways to improve on the overall efficiencies. The results obtained show that the full wave rectifier would be the better option when designing a WPT system as more power can be drawn from the rectenna. The load also had a great role as this determined the amount of power drawn from the circuitry.
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »