The development of palladium (II)-specific amine-functionalized silica-based microparticles
- Fayemi, Omolola E, Ogunlaja, Adeniyi S, Antunes, Edith M, Nyokong, Tebello, Tshentu, Zenixole R
- Authors: Fayemi, Omolola E , Ogunlaja, Adeniyi S , Antunes, Edith M , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241083 , vital:50903 , xlink:href="https://doi.org/10.1080/01496395.2014.978017"
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species ([PtCl6]2− and [PdCl4]2−) on silica-based microparticles functionalized with ammonium centers based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) were investigated. The functionalized sorbent materials were characterized using SEM, XPS, BET, and FTIR. The sorbents were used in the batch and column study for adsorption and selective separation of [PtCl62− and PdCl4]2−. The adsorption model for both [PtCl6]2− and [PdCl4]2− on the different sorbent materials fitted the Freundlich isotherm with R2 values > 0.99. The S-TETA sorbent material was palladium(II) specific. Pd(II) loaded on the silica column was recovered using 3% m/v thiourea solution as the eluting agent. Separation of platinum and palladium was achieved by selective stripping of [PtCl6]2− with 0.5 M of NaClO4 in 1.0 M HCl while Pd(II) was eluted with 0.5 M thiourea in 1.0 M HCl. The separation of palladium (Pd) from a mixture containing platinum (Pt), iridium (Ir), and rhodium (Rh) was successful on silica functionalized with triethylenetriamine (TETA) showing specificity for palladium(II) and a loading capacity of 0.27 mg/g. S-TETA showed potential for use in the recovery of palladium from platinum group metals such as from solutions of worn out automobile emission control catalytic convertors and other secondary sources.
- Full Text:
- Date Issued: 2015
- Authors: Fayemi, Omolola E , Ogunlaja, Adeniyi S , Antunes, Edith M , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241083 , vital:50903 , xlink:href="https://doi.org/10.1080/01496395.2014.978017"
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species ([PtCl6]2− and [PdCl4]2−) on silica-based microparticles functionalized with ammonium centers based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) were investigated. The functionalized sorbent materials were characterized using SEM, XPS, BET, and FTIR. The sorbents were used in the batch and column study for adsorption and selective separation of [PtCl62− and PdCl4]2−. The adsorption model for both [PtCl6]2− and [PdCl4]2− on the different sorbent materials fitted the Freundlich isotherm with R2 values > 0.99. The S-TETA sorbent material was palladium(II) specific. Pd(II) loaded on the silica column was recovered using 3% m/v thiourea solution as the eluting agent. Separation of platinum and palladium was achieved by selective stripping of [PtCl6]2− with 0.5 M of NaClO4 in 1.0 M HCl while Pd(II) was eluted with 0.5 M thiourea in 1.0 M HCl. The separation of palladium (Pd) from a mixture containing platinum (Pt), iridium (Ir), and rhodium (Rh) was successful on silica functionalized with triethylenetriamine (TETA) showing specificity for palladium(II) and a loading capacity of 0.27 mg/g. S-TETA showed potential for use in the recovery of palladium from platinum group metals such as from solutions of worn out automobile emission control catalytic convertors and other secondary sources.
- Full Text:
- Date Issued: 2015
The development of Palladium(II)-specific amine-functionalized silica-based microparticles : adsorption and column separation studies
- Fayemi, Omolola E, Ogunlaja, Adeniyi S, Antunes, Edith M, Nyokong, Tebello, Tshentu, Zenixole R
- Authors: Fayemi, Omolola E , Ogunlaja, Adeniyi S , Antunes, Edith M , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7270 , http://hdl.handle.net/10962/d1020285
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species ([PtCl6]2− and [PdCl4]2−) on silica-based microparticles functionalized with ammonium centers based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) were investigated. The functionalized sorbent materials were characterized using SEM, XPS, BET, and FTIR. The sorbents were used in the batch and column study for adsorption and selective separation of [PtCl62− and PdCl4]2−. The adsorption model for both [PtCl6]2− and [PdCl4]2− on the different sorbent materials fitted the Freundlich isotherm with R2 values > 0.99. The S-TETA sorbent material was palladium(II) specific. Pd(II) loaded on the silica column was recovered using 3% m/v thiourea solution as the eluting agent. Separation of platinum and palladium was achieved by selective stripping of [PtCl6]2− with 0.5 M of NaClO4 in 1.0 M HCl while Pd(II) was eluted with 0.5 M thiourea in 1.0 M HCl. The separation of palladium (Pd) from a mixture containing platinum (Pt), iridium (Ir), and rhodium (Rh) was successful on silica functionalized with triethylenetriamine (TETA) showing specificity for palladium(II) and a loading capacity of 0.27 mg/g. S-TETA showed potential for use in the recovery of palladium from platinum group metals such as from solutions of worn out automobile emission control catalytic convertors and other secondary sources. , Original publication is available at http://dx.doi.org/10.1080/01496395.2014.978017
- Full Text: false
- Date Issued: 2015
- Authors: Fayemi, Omolola E , Ogunlaja, Adeniyi S , Antunes, Edith M , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7270 , http://hdl.handle.net/10962/d1020285
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species ([PtCl6]2− and [PdCl4]2−) on silica-based microparticles functionalized with ammonium centers based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) were investigated. The functionalized sorbent materials were characterized using SEM, XPS, BET, and FTIR. The sorbents were used in the batch and column study for adsorption and selective separation of [PtCl62− and PdCl4]2−. The adsorption model for both [PtCl6]2− and [PdCl4]2− on the different sorbent materials fitted the Freundlich isotherm with R2 values > 0.99. The S-TETA sorbent material was palladium(II) specific. Pd(II) loaded on the silica column was recovered using 3% m/v thiourea solution as the eluting agent. Separation of platinum and palladium was achieved by selective stripping of [PtCl6]2− with 0.5 M of NaClO4 in 1.0 M HCl while Pd(II) was eluted with 0.5 M thiourea in 1.0 M HCl. The separation of palladium (Pd) from a mixture containing platinum (Pt), iridium (Ir), and rhodium (Rh) was successful on silica functionalized with triethylenetriamine (TETA) showing specificity for palladium(II) and a loading capacity of 0.27 mg/g. S-TETA showed potential for use in the recovery of palladium from platinum group metals such as from solutions of worn out automobile emission control catalytic convertors and other secondary sources. , Original publication is available at http://dx.doi.org/10.1080/01496395.2014.978017
- Full Text: false
- Date Issued: 2015
The Development of Palladium(II)-Specific Amine-Functionalized Silica-Based Microparticles: Adsorption and Column Separation Studies
- Fayemi, Omolola E, Ogunlaja, Adeniyi S, Antunes, Edith M, Nyokong, Tebello, Tshentu, Zenixole R
- Authors: Fayemi, Omolola E , Ogunlaja, Adeniyi S , Antunes, Edith M , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7269 , http://hdl.handle.net/10962/d1020278
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species ([PtCl6]2− and [PdCl4]2−) on silica-based microparticles functionalized with ammonium centers based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) were investigated. The functionalized sorbent materials were characterized using SEM, XPS, BET, and FTIR. The sorbents were used in the batch and column study for adsorption and selective separation of [PtCl62− and PdCl4]2−. The adsorption model for both [PtCl6]2− and [PdCl4]2− on the different sorbent materials fitted the Freundlich isotherm with R2 values > 0.99. The S-TETA sorbent material was palladium(II) specific. Pd(II) loaded on the silica column was recovered using 3% m/v thiourea solution as the eluting agent. Separation of platinum and palladium was achieved by selective stripping of [PtCl6]2− with 0.5 M of NaClO4 in 1.0 M HCl while Pd(II) was eluted with 0.5 M thiourea in 1.0 M HCl. The separation of palladium (Pd) from a mixture containing platinum (Pt), iridium (Ir), and rhodium (Rh) was successful on silica functionalized with triethylenetriamine (TETA) showing specificity for palladium(II) and a loading capacity of 0.27 mg/g. S-TETA showed potential for use in the recovery of palladium from platinum group metals such as from solutions of worn out automobile emission control catalytic convertors and other secondary sources. , Original publication is available at http://dx.doi.org/10.1080/01496395.2014.978017
- Full Text: false
- Date Issued: 2015
- Authors: Fayemi, Omolola E , Ogunlaja, Adeniyi S , Antunes, Edith M , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7269 , http://hdl.handle.net/10962/d1020278
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species ([PtCl6]2− and [PdCl4]2−) on silica-based microparticles functionalized with ammonium centers based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) were investigated. The functionalized sorbent materials were characterized using SEM, XPS, BET, and FTIR. The sorbents were used in the batch and column study for adsorption and selective separation of [PtCl62− and PdCl4]2−. The adsorption model for both [PtCl6]2− and [PdCl4]2− on the different sorbent materials fitted the Freundlich isotherm with R2 values > 0.99. The S-TETA sorbent material was palladium(II) specific. Pd(II) loaded on the silica column was recovered using 3% m/v thiourea solution as the eluting agent. Separation of platinum and palladium was achieved by selective stripping of [PtCl6]2− with 0.5 M of NaClO4 in 1.0 M HCl while Pd(II) was eluted with 0.5 M thiourea in 1.0 M HCl. The separation of palladium (Pd) from a mixture containing platinum (Pt), iridium (Ir), and rhodium (Rh) was successful on silica functionalized with triethylenetriamine (TETA) showing specificity for palladium(II) and a loading capacity of 0.27 mg/g. S-TETA showed potential for use in the recovery of palladium from platinum group metals such as from solutions of worn out automobile emission control catalytic convertors and other secondary sources. , Original publication is available at http://dx.doi.org/10.1080/01496395.2014.978017
- Full Text: false
- Date Issued: 2015
Adsorption and separation of platinum and palladium by polyamine functionalized polystyrene-based beads and nanofibers
- Fayemi, Omolola E, Ogunlaja, Adeniyi S, Kempgens, Pierre F M, Antunes, Edith M, Torto, Nelson, Nyokong, Tebello, Tshentu, Zenixole R
- Authors: Fayemi, Omolola E , Ogunlaja, Adeniyi S , Kempgens, Pierre F M , Antunes, Edith M , Torto, Nelson , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241694 , vital:50961 , xlink:href="https://doi.org/10.1016/j.mineng.2013.06.006"
- Description: Adsorption and separation of platinum and palladium chlorido species (PtCl62- and PdCl42-) on polystyrene beads as well as nanofibers functionalized with ammonium centres based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and tris-(2-aminoethyl)amine (TAEA) are described. The functionalized sorbent materials were characterized by microanalysis, SEM, XPS, BET and FTIR. The surface area of the functionalized fibers was in the range 69–241 m2/g while it was 73–107 m2/g for the beads. The adsorption and loading capacities of the sorption materials were investigated using both the batch and column studies at 1 M HCl concentration. The adsorption studies for both PtCl62- and PdCl42- on the different sorbent materials fit the Langmuir isotherm with R2 values >0.99. The highest loading capacity of Pt and Pd were 7.4 mg/g and 4.3 mg/g respectively for the nanofiber sorbent material based on ethylenediamine (EDA) while the beads with ethylenediamine (EDA) gave 1.0 mg/g and 0.2 mg/g for Pt and Pd respectively. Metals loaded on the sorbent materials were recovered by using 3% m/v thiourea solution as the eluting agent with quantitative desorption efficiency under the selected experimental conditions. Separation of platinum from palladium was partially achieved by selective stripping of PtCl62- with 0.5 M of NaClO4 in 1.0 M HCl while PdCl42- was eluted with 0.5 M thiourea in 1.0 M HCl. Separation of platinum from iridium and rhodium under 1 M HCl concentration was successful on triethylenetriamine (TETA)-functionalized Merrifield beads. This material (M-TETA) showed selectivity for platinum albeit the low loading capacity.
- Full Text:
- Date Issued: 2013
- Authors: Fayemi, Omolola E , Ogunlaja, Adeniyi S , Kempgens, Pierre F M , Antunes, Edith M , Torto, Nelson , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241694 , vital:50961 , xlink:href="https://doi.org/10.1016/j.mineng.2013.06.006"
- Description: Adsorption and separation of platinum and palladium chlorido species (PtCl62- and PdCl42-) on polystyrene beads as well as nanofibers functionalized with ammonium centres based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and tris-(2-aminoethyl)amine (TAEA) are described. The functionalized sorbent materials were characterized by microanalysis, SEM, XPS, BET and FTIR. The surface area of the functionalized fibers was in the range 69–241 m2/g while it was 73–107 m2/g for the beads. The adsorption and loading capacities of the sorption materials were investigated using both the batch and column studies at 1 M HCl concentration. The adsorption studies for both PtCl62- and PdCl42- on the different sorbent materials fit the Langmuir isotherm with R2 values >0.99. The highest loading capacity of Pt and Pd were 7.4 mg/g and 4.3 mg/g respectively for the nanofiber sorbent material based on ethylenediamine (EDA) while the beads with ethylenediamine (EDA) gave 1.0 mg/g and 0.2 mg/g for Pt and Pd respectively. Metals loaded on the sorbent materials were recovered by using 3% m/v thiourea solution as the eluting agent with quantitative desorption efficiency under the selected experimental conditions. Separation of platinum from palladium was partially achieved by selective stripping of PtCl62- with 0.5 M of NaClO4 in 1.0 M HCl while PdCl42- was eluted with 0.5 M thiourea in 1.0 M HCl. Separation of platinum from iridium and rhodium under 1 M HCl concentration was successful on triethylenetriamine (TETA)-functionalized Merrifield beads. This material (M-TETA) showed selectivity for platinum albeit the low loading capacity.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »