Towards the development of a mycoinsecticide to control white grubs (Coleoptera: Scarabaeidae) in South African sugarcane
- Authors: Goble, Tarryn Anne
- Date: 2013
- Subjects: Insecticides -- Environmental aspects Insecticides -- Toxicology Beetles -- South Africa -- KwaZulu-Natal Beetles -- Control -- South Africa -- KwaZulu-Natal Coleophoridae -- South Africa -- KwaZulu-Natal Scarabaeidae -- South Africa -- KwaZulu-Natal Sugarcane -- Diseases and pests -- South Africa -- KwaZulu-Natal Sugarcane -- Diseases and pests -- Control -- South Africa -- KwaZulu-Natal , Insecticides
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5586 , http://hdl.handle.net/10962/d1001748
- Description: In the KwaZulu-Natal (KZN) Midlands North region of South Africa, the importance and increased prevalence of endemic scarabaeids, particularly Hypopholis sommeri Burmeister and Schizonycha affinis Boheman (Coleoptera: Melolonthinae), as soil pests of sugarcane, and a need for their control was established. The development of a mycoinsecticide offers an environmentally friendly alternative to chemical insecticides. The identification of a diversity of white grub species, in two Scarabaeidae subfamilies, representing seven genera were collected in sugarcane as a pest complex. Hypopholis sommeri and S. affinis were the most prevalent species. The increased seasonal abundances, diversity and highly aggregated nature of these scarabaeid species in summer months, suggested that targeting and control strategies for these pests should be considered in this season. Increased rainfall, relative humidity and soil temperatures were linked to the increased occurrence of scarab adults and neonate grubs. Beauveria brongniartii (Saccardo) Petch epizootics were recorded at two sites in the KZN Midlands North on H. sommeri. Seventeen different fluorescently-labelled microsatellite PCR primers were used to target 78 isolates of Beauveria sp. DNA. Microsatellite data resolved two distinct clusters of Beauveria isolates which represented the Beauveria bassiana senso stricto (Balsamo) Vuillemin and B. brongniartii species groups. These groupings were supported by two gene regions, the nuclear ribosomal Internal Transcribed Spacer (ITS) and the nuclear B locus (Bloc) gene of which 23 exemplar Beauveria isolates were represented and sequenced. When microsatellite data were analysed, 26 haplotypes among 58 isolates of B. brongniartii were distinguished. Relatively low levels of genetic diversity were detected in B. brongniartii and isolates were shown to be closely related. There was no genetic differentiation between the two sites, Harden Heights and Canema in the KZN Midlands North. High gene flow from swarming H. sommeri beetles is the proposed mechanism for this lack of genetic differentiation between populations. Microsatellite analyses also showed that B. brongniartii conidia were being cycled from arboreal to subterranean habitats in the environment by H. sommeri beetles. This was the first record of this species of fungus causing epizootics on the larvae and adults of H. sommeri in South Africa. The virulence of 21 isolates of Beauveria brongniartii and two isolates of B. bassiana were evaluated against the adults and larvae of S. affinis and the adults of H. sommeri and Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Despite being closely-related, B. brongniartii isolates varied significantly in their virulence towards different hosts and highlighted the host specific nature of B. brongniartii towards S. affinis when compared to B. bassiana. Adults of S. affinis were significantly more susceptible to B. brongniartii isolates than the second (L2) or third instar (L3) grubs. The median lethal time (LT₅₀) of the most virulent B. brongniartii isolate (C13) against S. affinis adults was 7.8 days and probit analysis estimated a median lethal concentration (LC₅₀) of 4.4×10⁷ conidia/ml⁻¹. When L2 grubs were treated with a concentration of 1.0×10⁸ conidia/ml⁻¹, B. brongniartii isolates HHWG1, HHB39A and C17 caused mortality in L2 grubs within 18.4-19.8 days (LT₅₀). Beauveria brongniartii isolate HHWG1 was tested against the L3 grubs of S. affinis at four different concentrations. At the lowest concentration (1×10⁶ conidia/ml⁻¹), the LT₅₀ was 25.8 days, and at the highest concentration (1×10⁹ conidia/ml⁻¹) the LT₅₀ dropped to 15.1 days. The persistence of B. bassiana isolate 4222 formulated on rice and wheat bran and buried at eight field sites in the KZN Midlands North was evaluated by plating out a suspension of treated soil onto a selective medium. All eight field sites showed a significant decline in B. bassiana CFUs per gram of soil over time, with few conidia still present in the samples after a year. Greater declines in CFUs were observed at some sites but there were no significant differences observed in the persistence of conidia formulated on rice or wheat bran as carriers. Overall, poor persistence of B. bassiana isolate 4222 was attributed to suboptimum temperatures, rainfall, which rapidly degraded the nutritive carriers, attenuated fungal genotype and the action of antagonistic soil microbes. Growers’ perceptions of white grubs as pests and the feasibility of a mycoinsecticide market were evaluated by means of a semi-structured questionnaire. The study showed that the reduced feasibility of application, general lack of potential demand for a product, high cost factors and most importantly, the lack of pest perception, were factors which would negatively affect the adoption of a granular mycoinsecticide. Growers however exhibited a positive attitude towards mycoinsecticides, and showed all the relevant attributes for successful technology adoption. It is recommended that because B. brongniartii epizootics were recorded on target pests which indicated good host specificity, dispersal ability and persistence of the fungus in the intended environment of application; that a mycoinsecticide based on this fungal species be developed. What will likely increase adoption and success of a mycoinsecticide is collaboration between various industries partners to increases market potential in other crops such as Acacia mearnsii De Wild (Fabales: Fabaceae).
- Full Text:
- Date Issued: 2013
Investigation of entomopathogenic fungi for control of false codling moth, Thaumatotibia leucotrata, Mediterranean fruit fly, Ceratitis capitata and Natal fruit fly, C. rosa in South African citrus
- Authors: Goble, Tarryn Anne
- Date: 2010
- Subjects: Insect pests -- Biological control , Tortricidae -- Biological control -- South Africa , Tephritidae -- Biological control -- South Africa , Citrus -- Diseases and pests -- Biological control -- South Africa , Entomopathogenic fungi , Fungi as biological pest control agents , Biological pest control agents
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5723 , http://hdl.handle.net/10962/d1005409 , Insect pests -- Biological control , Tortricidae -- Biological control -- South Africa , Tephritidae -- Biological control -- South Africa , Citrus -- Diseases and pests -- Biological control -- South Africa , Entomopathogenic fungi , Fungi as biological pest control agents , Biological pest control agents
- Description: The biology of key citrus pests Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae), Ceratitis capitata Wiedemann (Diptera: Tephritidae) and Ceratitis rosa Karsch (Diptera: Tephritidae) includes their dropping from host plants to pupate in the soil below citrus trees. Since most EP fungi are soil-borne microorganisms, the development and formulation of alternative control strategies using these fungi as subterranean control agents, targeted at larvae and pupae in the soil, can potentially benefit existing IPM management of citrus in South Africa. Thus, a survey of occurrence of entomopathogenic fungi was undertaken on soils from citrus orchards and natural vegetation (refugia) on conventionally and organically managed farms in the Eastern Cape Province in South Africa. A method for baiting soil samples with citrus pest T. leucotreta and C. capitata larvae, as well as with the standard bait insect, Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), was implemented. Sixty-two potentially useful entomopathogenic fungal isolates belonging to four genera were collected from 288 soil samples, an occurrence frequency of 21.53%. The most frequently isolated entomopathogenic fungal species was Beauveria bassiana (Balsamo) Vuillemin (15.63%), followed by Metarhizium anisopliae var. anisopliae (Metschnikoff) Sorokin (3.82%). Galleria mellonella was the most effective insect used to isolate fungal species (χ2=40.13, df=2, P≤ 0.005), with a total of 45 isolates obtained, followed by C. capitata with 11 isolates, and T. leucotreta with six isolates recovered. There was a significantly (χ2=11.65, df=1, P≤ 0.005) higher occurrence of entomopathogenic fungi in soil samples taken from refugia compared to cultivated orchards of both organically and conventionally managed farms. No significant differences were observed in the recovery of fungal isolates when soil samples from both farming systems were compared. The physiological effects and host range of 21 indigenous fungal isolates obtained in the Eastern Cape were investigated in the laboratory to establish whether these isolates could be effectively used as biological control agents against the subterranean life stages of C. rosa, C. capitata and T. leucotreta. When these pests were treated with a fungal concentration of 1 x 10⁷ conidia ml⁻¹, the percentage of T. leucotreta adults which emerged in fungal treated sand ranged from 5 to 60% (F=33.295; df=21; P=0.0001) depending on fungal isolate and the percentage of pupae with visible signs of mycosis ranged from 21 to 93% (F= 96.436; df=21; P=0.0001). Based on fungal isolates, the percentage adult survival in C. rosa and C. capitata ranged from 30 to 90% and 55 to 86% respectively. The percentage of C. rosa and C. capitata puparia with visible signs of mycosis ranged from 1 to 14% and 1 to 11% respectively. Deferred mortality due to mycosis in C. rosa and C. capitata adult flies ranged from 1 to 58% and 1 to 33% respectively, depending on fungal isolate. Entomopathogenic fungal isolates had a significantly greater effect on the adults of C. rosa and C. capitata than they did on the puparia of these two fruit fly species. Further, C. rosa and C. capitata did not differ significantly in their response to entomopathogenic fungi when adult survival or adult and pupal mycosis were considered. The relative potency of the four most virulent Beauveria isolates as well as the commercially available Beauveria bassiana product, Bb Plus® (Biological Control Products, South Africa), were compared against one another as log-probit regressions of mortality against C. rosa, C. capitata and T. leucotreta which all exhibited a dose-dependent response. Against fruit flies the estimated LC50 values of all five Beauveria isolates ranged from 5.5 x 10¹¹ to 2.8 x 10¹² conidia/ml⁻¹. There were no significant differences between the relative potencies of these five fungal isolates. When T. leucotreta was considered, isolates: G Moss R10 and G 14 2 B5 and Bb Plus® were significantly more pathogenic than G B Ar 23 B3 and FCM 10 13 L1. The estimated LC₅₀ values of the three most pathogenic isolates ranged from 6.8 x 10⁵ to 2.1 x 10⁶ conidia/ml⁻¹, while those of the least pathogenic ranged from 1.6 x 10⁷ to 3.7 x 10⁷ conidia/ml⁻¹. Thaumatotibia leucotreta final instar larvae were exposed to two conidial concentrations, at four different exposure times (12, 48, 72 and 96 hrs) and showed an exposure time-dependant relationship (F=5.43; df=3; P=0.001). At 1 x 10⁷conidia/ml⁻¹ two Beauveria isolates: G Moss R10 and G 14 2 B5 were able to elicit a response in 50% of test insects at 72 hrs (3 days) exposure. Although a limited amount of mycosis was observed in the puparia of both fruit fly species, deferred adult mortality due to mycosis was high. The increased incidence of adult mortality suggests that post emergence mycosis in adult fruit flies may play a more significant role in field suppression than the control of fruit flies at the pupal stage. The increased incidence of pupal mortality, as well as the relatively low concentrations of conidia required to elicit meaningful responses in T. leucotreta pupae may suggest that pre-emergent control of false codling moth will play a more significant role in field suppression than the control of adult life stages using indigenous isolates of entomopathogenic fungi. Various entomopathogenic fungal application techniques targeted at key insect pests within integrated pest management (IPM) systems of citrus are discussed.
- Full Text:
- Date Issued: 2010