An integrated framework for assessing coastal community vulnerability across cultures, oceans and scales
- Authors: Aswani, Shankar , Howard, J A , Gasalla, Maria A , Jennings, Sarah M , Malherbe, W , Martins, I M , Salim Shyam , Van Putten, Ingrid E , Swathilekshmi, P S , Narayanakumar, R , Watmough G R
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/421581 , vital:71863 , xlink:href="https://doi.org/10.1080/17565529.2018.1442795"
- Description: Coastal communities are some of the most at-risk populations with respect to climate change impacts. It is therefore important to determine the vulnerability of such communities to co-develop viable adaptation options. Global efforts to address this issue include international scientific projects, such as Global Learning for Local Solutions (GULLS), which focuses on five fast warming regions of the southern hemisphere and aims to provide an understanding of the local scale processes influencing community vulnerability that can then be up-scaled to regional, country and global levels. This paper describes the development of a new social and ecological vulnerability framework which integrates exposure, sensitivity and adaptive capacity with the social livelihoods and food security approaches. It also measures community flexibility to understand better the adaptive capacity of different levels of community organization. The translation of the conceptual framework to an implementable method is described and its application in a number of “hotspot” countries, where ocean waters are warming faster than the rest of the world, is presented. Opportunities for cross-cultural comparisons to uncover similarities and differences in vulnerability and adaptation patterns among the study’s coastal communities, which can provide accelerated learning mechanisms to other coastal regions, are highlighted. The social and ecological framework and the associated survey approach allow for future integration of local-level vulnerability data with ecological and oceanographic models.
- Full Text:
- Date Issued: 2019
Governance mapping: a framework for assessing the adaptive capacity of marine resource governance to environmental change
- Authors: Dutra, Leo X C , Sporne, Ilva , Haward, Marcus , Aswani, Shankar , Cochrane, Kevern L , Frusher, Stewart , Gasalla, Maria A , Gianesella, Sônia M F , Grant, Tanith , Hobday, Alistair J , Jennings, Sarah M , Plagányi, Éva , Pecl, Gretta T , Salim, Shyam S , Sauer, Warwick H H , Taboada, Manuela B , Van Putten, Ingrid E
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/145336 , vital:38429 , DOI: 10.1016/j.marpol.2018.12.011
- Description: Marine social-ecological systems are influenced by the way humans interact with their environment, and external forces, which change and re-shape the environment. In many regions, exploitation of marine resources and climate change are two of the primary drivers shifting the abundance and distribution of marine living resources, with negative effects on marine-dependent communities. Governance systems determine ‘who’ makes decisions, ‘what’ are their powers and responsibilities, and ‘how’ they are exercised. Understanding the connections between the actors comprising governance systems and influences between governance and the environment is therefore critical to support successful transitions to novel forms of governance required to deal with environmental changes. The paper provides an analytical framework with a practical example from Vanuatu, for mapping and assessment of the governance system providing for management of coral reef fish resources. The framework enables a rapid analysis of governance systems to identify factors that can encourage, or hinder, the adaptation of communities to changes in abundance or availability of marine resources.
- Full Text:
- Date Issued: 2019
An integrated framework for assessing coastal community vulnerability across cultures, oceans and scales
- Authors: Aswani, Shankar , Howard, J A E , Gasalla, Maria A , Jennings, Sarah M , Malherbe, W , Martins, I M , Salim, Shyam S
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123063 , vital:35402 , https://doi.10.1080/17565529.2018.1442795
- Description: Across the globe, many coastal communities rely on marine resources for their food security (FS), income and livelihoods and with predicted trends in human populations, the number of people reliant on these resources is likely to increase (FAO, 2012). However, the effects of climate change including increased variability are already being experienced by coastal communities and appear to be accelerating (Doney et al., 2012). Depending on a range of factors, including location, these changes are having mild to severe impacts on communities both in direct and indirect ways (Miller et al., 2010). Communities in coastal areas, for instance, are particularly at risk due to sea level rise but also through their dependence on marine resources that are impacted by multiple climate change pressures. A change in the availability and condition of marine resources has consequences on the livelihoods of fishing populations or those who depend directly on fishing as a source of food (Badjeck, Allison, Halls, & Dulvy, 2010).
- Full Text:
- Date Issued: 2018
Planning adaptation to climate change in fast-warming marine regions with seafood-dependent coastal communities
- Authors: Hobday, Alistair J , Cochrane, Kevern L , Howard, James , Aswani, Shankar , Byfield, Val , Duggan, Greg , Duna, Elethu , Dutra, Leo X C , Frusher, Stewart D , Fulton, Elizabeth A , Gammage, Louise , Gasalla, Maria A , Griffiths, Chevon , Guissamulo, Almeida , Haward, Marcus , Jarre, Astrid , Jennings, Sarah M , Jordan, Tia , Joyner, Jessica , Ramani, Narayana K , Shanmugasundaram, Swathi L P , Malherbe, Willem , Ortega-Cisneros, Kelly , Paytan, Adina , Pecl, Gretta T , Plagányi, Éva E , Popova, Ekaterina E , Razafindrainibe, Haja , Roberts, Michael J , Rohit, Prathiba , Sainulabdeen, Shyam S , Sauer, Warwick H H , Valappil, Sathianandan T , Zacharia, Paryiappanal U , Van Putten, E Ingrid
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125675 , vital:35806 , https://doi.10.1007/s11160-016-9419-0
- Description: Many coastal communities rely on living marine resources for livelihoods and food security. These resources are commonly under stress from overfishing, pollution, coastal development and habitat degradation. Climate change is an additional stressor beginning to impact coastal systems and communities, but may also lead to opportunities for some species and the people they sustain. We describe the research approach for a multi-country project, focused on the southern hemisphere, designed to contribute to improving fishing community adaptation efforts by characterizing, assessing and predicting the future of coastal-marine food resources, and codeveloping adaptation options through the provision and sharing of knowledge across fast-warming marine regions (i.e. marine ‘hotspots’). These hotspots represent natural laboratories for observing change and concomitant human adaptive responses, and for developing adaptation options and management strategies. Focusing on adaptation options and strategies for enhancing coastal resilience at the local level will contribute to capacity building and local empowerment in order to minimise negative outcomes and take advantage of opportunities arising from climate change. However, developing comparative approaches across regions that differ in political institutions, socio-economic community demographics, resource dependency and research capacity is challenging. Here, we describe physical, biological, social and governance tools to allow hotspot comparisons, and several methods to evaluate and enhance interactions within a multi-nation research team. Strong partnerships within and between the focal regions are critical to scientific and political support for development of effective approaches to reduce future vulnerability. Comparing these hotspot regions will enhance local adaptation responses and generate outcomes applicable to other regions.
- Full Text:
- Date Issued: 2016