The complex relationship between asset wealth, adaptation, and diversification in tropical fisheries
- Authors: Taylor, Sarah F , Aswani, Shankar , Jiddawi, Narriman , Coupland, Jack , James, Phillip , Kelly, Stephen , Kizenga, Hellen , Roberts, Michael J , Popova, Ekaterina
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/403475 , vital:69964 , xlink:href="https://doi.org/10.1016/j.ocecoaman.2021.105808"
- Description: Marine small-scale fisheries are complex social and ecological systems that are currently pressurised by climate change, increasing demand for food, and expectation to sustain livelihoods. Species diversification and occupational diversification are often offered as adaptation strategies to increase the resilience of these fisheries to natural and economic shocks. However, little is known about the nature of species diversification within marine tropical fisheries. Based on 293 interviews with artisanal fishers from six coastal communities located at the isles of Zanzibar, Pemba, Mafia, and Mainland Tanga in Tanzania - we assess if fishers with the highest level of species diversification are the most financially secure and able to adapt to changes in the fishing industry. By creating an Asset Wealth Index (AWI) based on a Multiple Correspondence Approach (MCA), we investigate the relative levels of adaptive capacity and fishery connectivity within the different regional wealth quartiles. We find that less wealthy fishers target fewer species, making them less able to absorb changes in management measures focused on species, area, and closures. Likewise, fishers with higher wealth scores and higher adaptive capacity are able to better absorb the short-term losses of fisheries closures when compared to those with lower wealth and adaptive scores reliant on higher levels of fishery connectivity.
- Full Text:
- Date Issued: 2021
Ecological connectivity between the areas beyond national jurisdiction and coastal waters: Safeguarding interests of coastal communities in developing countries
- Authors: Popova, Ekaterina , Vousden, David , Sauer, Warwick H H , Mohammed, Essam Y , Allain, Valerie , Downey-Breedt, Nicola , Fletcher, Ruth , Gjerde, Kristina M , Halpin, Patrick , Kelly, Stephen , Obura, David , Pecl, Gretta T , Roberts, Michael J , Raitsos, Dionysios E , Rogers, Alex , Samoilys, Melita , Sumaila , Ussif Rashid , Tracey, Sean , Yool, Andrew
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124331 , vital:35594 , https://doi.10.1016/j.marpol.2019.02.050
- Description: The UN General Assembly has made a unanimous decision to start negotiations to establish an international, legally-binding instrument for the conservation and sustainable use of marine biological diversity within Areas Beyond National Jurisdiction (ABNJ). However, there has of yet been little discussion on the importance of this move to the ecosystem services provided by coastal zones in their downstream zone of influence. Here, we identify the ecological connectivity between ABNJ and coastal zones as critically important in the negotiation process and apply several approaches to identify some priority areas for protection from the perspective of coastal populations of Least Developed Countries (LDCs). Initially, we review the scientific evidence that demonstrates ecological connectivity between ABNJ and the coastal zones with a focus on the LDCs. We then use ocean modelling to develop a number of metrics and spatial maps that serve to quantify the connectivity of the ABNJ to the coastal zone. We find that the level of exposure to the ABNJ influences varies strongly between countries. Similarly, not all areas of the ABNJ are equal in their impacts on the coastline. Using this method, we identify the areas of the ABNJ that are in the most urgent need of protection on the grounds of the strength of their potential downstream impacts on the coastal populations of LDCs. We argue that indirect negative impacts of the ABNJ fishing, industrialisation and pollution, communicated via oceanographic, cultural and ecological connectivity to the coastal waters of the developing countries should be of concern.
- Full Text:
- Date Issued: 2019
From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots
- Authors: Popova, Ekaterina , Yool, Andrew , Byfield, Valborg , Cochrane, Kevern , Coward, Andrew C , Salim, Shyam S , Gasalla, Maria A , Henson, S.A , Hobday, Alistair J , Pecl, Gretta T , Sauer, Warwick H H , Roberts, Michael J
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124514 , vital:35623 , https://doi.10.1111/gcb.13247
- Description: Ocean warming ‘hotspots’ are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2-driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.
- Full Text:
- Date Issued: 2016