Implantation, orientation and validation of a commercially produced heart-rate logger for use in a perciform teleost fish:
- Muller, Cuen, Childs, Amber-Robyn, Duncan, Murray I, Skeeles, Michael R, James, Nicola C, Van der Walt, Kerry-Ann, Winkler, Alexander C, Potts, Warren M
- Authors: Muller, Cuen , Childs, Amber-Robyn , Duncan, Murray I , Skeeles, Michael R , James, Nicola C , Van der Walt, Kerry-Ann , Winkler, Alexander C , Potts, Warren M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148494 , vital:38744 , doi.org.wam.seals.ac.za/10.1093/conphys/coaa035
- Description: Quantifying how the heart rate of ectothermic organisms responds to environmental conditions (e.g. water temperature) is important information to quantify their sensitivity to environmental change. Heart rate studies have typically been conducted in lab environments where fish are confined. However, commercially available implantable heart rate biologgers provide the opportunity to study free-swimming fish. Our study aimed to determine the applicability of an implantable device, typically used on fusiform-shaped fish (e.g. salmonids), for a perciform fish where morphology and anatomy prevent ventral incisions normally used on fusiform-shaped fish.
- Full Text:
- Date Issued: 2020
- Authors: Muller, Cuen , Childs, Amber-Robyn , Duncan, Murray I , Skeeles, Michael R , James, Nicola C , Van der Walt, Kerry-Ann , Winkler, Alexander C , Potts, Warren M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148494 , vital:38744 , doi.org.wam.seals.ac.za/10.1093/conphys/coaa035
- Description: Quantifying how the heart rate of ectothermic organisms responds to environmental conditions (e.g. water temperature) is important information to quantify their sensitivity to environmental change. Heart rate studies have typically been conducted in lab environments where fish are confined. However, commercially available implantable heart rate biologgers provide the opportunity to study free-swimming fish. Our study aimed to determine the applicability of an implantable device, typically used on fusiform-shaped fish (e.g. salmonids), for a perciform fish where morphology and anatomy prevent ventral incisions normally used on fusiform-shaped fish.
- Full Text:
- Date Issued: 2020
Thermal tolerance and the potential effects of climate change on coastal intertidal and estuarine organisms in the Kariega Estuary and adjacent intertitdal coastline, Eastern Cape, South Africa
- Authors: Van der Walt, Kerry-Ann
- Date: 2020
- Subjects: Ectotherms -- Climatic factors , Ectotherms -- Effect of temperature on , Fishes -- Climatic factors , Fishes -- Effect of temperature on , Climatic changes -- South Africa -- Eastern Cape
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/148459 , vital:38741
- Description: Temperature changes due to the effects of climate change are evident on all continents and oceans. As a result, there is a growing concern over how marine ectotherms will respond to extreme or fluctuating environmental temperatures. Temperature changes have strong direct and indirect effects on individual, population, and ecosystem functioning traits. A multi-scale approach determining the thermal tolerance and performance of several marine ectotherms belonging to different coastal habitats is rarely considered in thermal physiology studies but is effective for an integrated ecosystem assessment. As such, for this thesis, I aimed to quantify and compare the thermal tolerance and performance of a range of coastal marine ectotherms (fish and macro-invertebrates) with different biogeographical distributions from estuarine, subtidal and rocky intertidal habitats to available and projected in situ temperature data. This was also undertaken to gauge the local vulnerability of each species across summer and winter in a warm-temperate region of South Africa. This was done using a multi-method physiological approach, which included the dynamic method (CTmax and CTmin), static respirometry and maximum heart rate fHmax). Results of the dynamic method on several fish and macro-invertebrate species indicated that there are differences in thermal tolerance according to taxonomy, biogeography and habitat for both summer and winter. Macro-invertebrate species generally had higher CTmax endpoints, lower CTmin endpoints, higher upper and lower breadths in tolerance, higher upper and lower thermal safety margins and higher thermal scopes than the fish species. This could be a result of the macro-invertebrate species studied being less mobile compared with fish species (which are able to move to more favourable conditions) as well as having broader geographical distributions. In addition, macro-invertebrates from the intertidal rock pool habitat (Palaemon peringueyi; Pernaperna) were more tolerant of high and low temperatures compared with the macro-invertebrates from the estuarine habitat (Clibanarius virescens; Parasesarma catenatum; Upogebia africana). Overall, macro-invertebrates, with the exception of Parechinus angulosus, investigated in this study indicated that current temperatures and projected climate change scenarios across seasons would not have a significant impact on them and that they are highly adaptable to changing temperature regimes. This sign of high tolerance was further supported by the heart rates of P. perna and P. catenatum under an acute increase in temperature (1.0 °C.h-1) which showed individuals of each species physiologically depressing their metabolism until a final Arrhenius breakpoint temperature was reached (TAB). Among the fish species investigated in this study, tropical species (Chaetodon marleyi; Kuhlia mugil) had the highest CTmax and CTmin endpoints when compared with the temperate (Diplodus capensis; Sarpa salpa), warm-water endemic (Chelon dumerili; Rhabdosargus holubi) and cool-water endemic (Chelon richardsonii) fishes. This suggests that due to their lower breadths in tolerance and thermal safety margins being small, tropical species may be less tolerant of cold temperatures and thermal variability, especially in the form of summer upwelling events which are expected to increase in intensity and frequency in this region as a result of anthropogenic climate change effects. On the other hand, however, if a temperature increase of 2.0 - 4.0 °C takes place at the end of the century as predicted by the Intergovernmental Panel on Climate Change (IPCC), it is likely that tropical species such as C. marleyi will become more common. Temperate species such as D. capensis and S. salpa were able to tolerate a wide range of temperatures (wide thermal scope) compared with the other fish species. These findings may suggest that D. capensis and S. salpa are thermally resilient and may be the least vulnerable to climate change effects and temperature variability. When evaluating the different life stages of D. capensis, however, using the dynamic method (juveniles and adults), static respirometry (juveniles) and maximum heart rate (adults), results suggested that juveniles of this temperate species will be more resilient to increases in ocean temperatures compared with the adults because they have a higher thermal tolerance (CTmax/TCRIT) and a greater metabolic scope (TOPT) at higher temperatures. For both juveniles and adults, temperatures beyond 28.0 °C (upper Tpej; Tarr) will have a significant impact on their physiology. Using a multi-scale and multi-method approach thus helped to identify which species or community may be vulnerable to the effects of climate change within shallow coastal environments in this warm-temperate climate change hotspot. Adopting this type of approach will assist policy makers in developing comprehensive climate change management frameworks for coastal ecosystems globally and around South Africa.
- Full Text:
- Date Issued: 2020
- Authors: Van der Walt, Kerry-Ann
- Date: 2020
- Subjects: Ectotherms -- Climatic factors , Ectotherms -- Effect of temperature on , Fishes -- Climatic factors , Fishes -- Effect of temperature on , Climatic changes -- South Africa -- Eastern Cape
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/148459 , vital:38741
- Description: Temperature changes due to the effects of climate change are evident on all continents and oceans. As a result, there is a growing concern over how marine ectotherms will respond to extreme or fluctuating environmental temperatures. Temperature changes have strong direct and indirect effects on individual, population, and ecosystem functioning traits. A multi-scale approach determining the thermal tolerance and performance of several marine ectotherms belonging to different coastal habitats is rarely considered in thermal physiology studies but is effective for an integrated ecosystem assessment. As such, for this thesis, I aimed to quantify and compare the thermal tolerance and performance of a range of coastal marine ectotherms (fish and macro-invertebrates) with different biogeographical distributions from estuarine, subtidal and rocky intertidal habitats to available and projected in situ temperature data. This was also undertaken to gauge the local vulnerability of each species across summer and winter in a warm-temperate region of South Africa. This was done using a multi-method physiological approach, which included the dynamic method (CTmax and CTmin), static respirometry and maximum heart rate fHmax). Results of the dynamic method on several fish and macro-invertebrate species indicated that there are differences in thermal tolerance according to taxonomy, biogeography and habitat for both summer and winter. Macro-invertebrate species generally had higher CTmax endpoints, lower CTmin endpoints, higher upper and lower breadths in tolerance, higher upper and lower thermal safety margins and higher thermal scopes than the fish species. This could be a result of the macro-invertebrate species studied being less mobile compared with fish species (which are able to move to more favourable conditions) as well as having broader geographical distributions. In addition, macro-invertebrates from the intertidal rock pool habitat (Palaemon peringueyi; Pernaperna) were more tolerant of high and low temperatures compared with the macro-invertebrates from the estuarine habitat (Clibanarius virescens; Parasesarma catenatum; Upogebia africana). Overall, macro-invertebrates, with the exception of Parechinus angulosus, investigated in this study indicated that current temperatures and projected climate change scenarios across seasons would not have a significant impact on them and that they are highly adaptable to changing temperature regimes. This sign of high tolerance was further supported by the heart rates of P. perna and P. catenatum under an acute increase in temperature (1.0 °C.h-1) which showed individuals of each species physiologically depressing their metabolism until a final Arrhenius breakpoint temperature was reached (TAB). Among the fish species investigated in this study, tropical species (Chaetodon marleyi; Kuhlia mugil) had the highest CTmax and CTmin endpoints when compared with the temperate (Diplodus capensis; Sarpa salpa), warm-water endemic (Chelon dumerili; Rhabdosargus holubi) and cool-water endemic (Chelon richardsonii) fishes. This suggests that due to their lower breadths in tolerance and thermal safety margins being small, tropical species may be less tolerant of cold temperatures and thermal variability, especially in the form of summer upwelling events which are expected to increase in intensity and frequency in this region as a result of anthropogenic climate change effects. On the other hand, however, if a temperature increase of 2.0 - 4.0 °C takes place at the end of the century as predicted by the Intergovernmental Panel on Climate Change (IPCC), it is likely that tropical species such as C. marleyi will become more common. Temperate species such as D. capensis and S. salpa were able to tolerate a wide range of temperatures (wide thermal scope) compared with the other fish species. These findings may suggest that D. capensis and S. salpa are thermally resilient and may be the least vulnerable to climate change effects and temperature variability. When evaluating the different life stages of D. capensis, however, using the dynamic method (juveniles and adults), static respirometry (juveniles) and maximum heart rate (adults), results suggested that juveniles of this temperate species will be more resilient to increases in ocean temperatures compared with the adults because they have a higher thermal tolerance (CTmax/TCRIT) and a greater metabolic scope (TOPT) at higher temperatures. For both juveniles and adults, temperatures beyond 28.0 °C (upper Tpej; Tarr) will have a significant impact on their physiology. Using a multi-scale and multi-method approach thus helped to identify which species or community may be vulnerable to the effects of climate change within shallow coastal environments in this warm-temperate climate change hotspot. Adopting this type of approach will assist policy makers in developing comprehensive climate change management frameworks for coastal ecosystems globally and around South Africa.
- Full Text:
- Date Issued: 2020
Prioritising native fish populations for conservation using genetics in the Groot Marico catchment, North West Province, South Africa
- Authors: Van der Walt, Kerry-Ann
- Date: 2014
- Subjects: Native fishes Fishery management -- South Africa -- North West Fish populations Fishes -- Conservation -- South Africa -- Western Cape
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/69102 , vital:29390
- Description: The Groot Marico catchment in the North West Province is a National Freshwater Ecosystem Priority Area (NFEPA) because it represents unique landscape features with unique biodiversity that are considered to be of special ecological significance. Three native freshwater species Amphilius uranoscopus, Chiloglanis pretoriae and Barbus motebensis, have high local conservation importance and B. motebensis is endemic to the catchment and is IUCN-listed as vulnerable. The main objective of this study is to contribute towards the effective conservation of these three species in the Groot Marico River system by assessing their genetic structure to determine whether tributary populations of the three species comprise of one genetic population or whether they are divided into genetically distinct subpopulations, in order to prioritise areas for conservation. The central null hypothesis was that there is no genetic differentiation between tributary populations (i.e., panmixia) of B. motebensis, A. uranoscopus and C. pretoriae in the Groot Marico catchment, North West Province. In total, 80 individuals per species were collected, targeting at least 10 individuals per population from a total of eight populations (seven tributaries and the Groot Marico main stem) and across the study area. Samples were collected by electrofishing and specimens were euthanized using an overdose of clove oil. A sample of muscle tissue was removed for genetic evaluation and the remainder of the specimens served as voucher specimens. For the genetic evaluation, mitochondrial (ND2, cyt b) and nuclear (S7) genes were used. Genetic techniques used were DNA extraction, polymerase chain reaction (PCR), purification and sequencing. From the 240 individuals collected, 123 sequences for B. motebensis, 111 sequences for A. uranoscopus and 103 sequences for C. pretoriae were analysed across all three genes. Statistical analysis included looking at cleaned sequences in order to obtain models using MODELTEST (version 3.06). Population structuring and phylogeographic analysis was performed in Arlequin (version 2000), TCS (version 1.2.1) and PAUP*. Results indicated that for B. motebensis the null hypothesis could be rejected as there were two distinct lineages (the Draai and Eastern lineages) that demonstrated significant divergence in both the ND2 and S7 genes, suggesting historical isolation. The low divergence in the mitochondrial cytochrome b gene (0% < D < 0.8%) suggests that this isolation is not very old and is probably not comparable to species level differentiation. The null hypothesis was also rejected for A. uranoscopus as there were also significant levels of differentiation between tributary populations resulting in the identification of two lineages (the Ribbok and Western lineages). However, for C. pretoriae, the null hypothesis could not be rejected as there was no genetic differentiation between tributary populations i.e., one panmictic population. Therefore, due to each species showing different genetic structuring within the tributary populations, more than one priority area for conservation needs to be implemented. These priority areas of conservation where therefore evaluated based on the current conservation status of the species (B. motebensis being vulnerable on the IUCN Red List), the number of Evolutionary Significant Units for each species and the overall genetic diversity of all three species in the Groot Marico catchment. In total, four tributary populations were conservation priorities areas, these were the Draai, Vanstraatens, Ribbok and Kaaloog tributaries. The Draai, Vanstraatens and Kaaloog tributaries were selected as priority areas for B. motebensis (B. motebensis is considered to be the most vulnerable of all three species). The Draai tributary was selected due to the B. motebensis population within the tributary showing isolation from the rest of the tributary populations. In order to conserve B. motebensis from the Southern lineage, the Vanstraatens and Kaaloog tributaries were selected. Reasons for selecting these two specific tributaries within the Southern lineage were that the Vanstraatens tributary had unique alleles (three Evolutionary Significant Units) for B. motebensis and the Kaaloog tributary had high genetic diversity (HD = 0.889, ND2 gene) when compared to the other tributary populations. The Ribbok and Vanstraatens tributaries were selected as priority areas for the conservation of A. uranoscopus. The Ribbok tributary was selected as it showed isolation from the rest of the tributary populations, as seen with the Draai tributary (B. motebensis) and the Vanstraatens tributary was selected to represent the Western lineage as it had the highest diversity for both genes (ND2 and S7). The Ribbok tributary has the highest prioritisation when compared to the Vanstraatens tributary. Chiloglanis pretoriae occurs within the Draai, Vanstraatens, Ribbok and Kaaloog tributaries, therefore by prioritising these tributaries for conservation, C. pretoriae will in turn be conserved.
- Full Text:
- Date Issued: 2014
- Authors: Van der Walt, Kerry-Ann
- Date: 2014
- Subjects: Native fishes Fishery management -- South Africa -- North West Fish populations Fishes -- Conservation -- South Africa -- Western Cape
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/69102 , vital:29390
- Description: The Groot Marico catchment in the North West Province is a National Freshwater Ecosystem Priority Area (NFEPA) because it represents unique landscape features with unique biodiversity that are considered to be of special ecological significance. Three native freshwater species Amphilius uranoscopus, Chiloglanis pretoriae and Barbus motebensis, have high local conservation importance and B. motebensis is endemic to the catchment and is IUCN-listed as vulnerable. The main objective of this study is to contribute towards the effective conservation of these three species in the Groot Marico River system by assessing their genetic structure to determine whether tributary populations of the three species comprise of one genetic population or whether they are divided into genetically distinct subpopulations, in order to prioritise areas for conservation. The central null hypothesis was that there is no genetic differentiation between tributary populations (i.e., panmixia) of B. motebensis, A. uranoscopus and C. pretoriae in the Groot Marico catchment, North West Province. In total, 80 individuals per species were collected, targeting at least 10 individuals per population from a total of eight populations (seven tributaries and the Groot Marico main stem) and across the study area. Samples were collected by electrofishing and specimens were euthanized using an overdose of clove oil. A sample of muscle tissue was removed for genetic evaluation and the remainder of the specimens served as voucher specimens. For the genetic evaluation, mitochondrial (ND2, cyt b) and nuclear (S7) genes were used. Genetic techniques used were DNA extraction, polymerase chain reaction (PCR), purification and sequencing. From the 240 individuals collected, 123 sequences for B. motebensis, 111 sequences for A. uranoscopus and 103 sequences for C. pretoriae were analysed across all three genes. Statistical analysis included looking at cleaned sequences in order to obtain models using MODELTEST (version 3.06). Population structuring and phylogeographic analysis was performed in Arlequin (version 2000), TCS (version 1.2.1) and PAUP*. Results indicated that for B. motebensis the null hypothesis could be rejected as there were two distinct lineages (the Draai and Eastern lineages) that demonstrated significant divergence in both the ND2 and S7 genes, suggesting historical isolation. The low divergence in the mitochondrial cytochrome b gene (0% < D < 0.8%) suggests that this isolation is not very old and is probably not comparable to species level differentiation. The null hypothesis was also rejected for A. uranoscopus as there were also significant levels of differentiation between tributary populations resulting in the identification of two lineages (the Ribbok and Western lineages). However, for C. pretoriae, the null hypothesis could not be rejected as there was no genetic differentiation between tributary populations i.e., one panmictic population. Therefore, due to each species showing different genetic structuring within the tributary populations, more than one priority area for conservation needs to be implemented. These priority areas of conservation where therefore evaluated based on the current conservation status of the species (B. motebensis being vulnerable on the IUCN Red List), the number of Evolutionary Significant Units for each species and the overall genetic diversity of all three species in the Groot Marico catchment. In total, four tributary populations were conservation priorities areas, these were the Draai, Vanstraatens, Ribbok and Kaaloog tributaries. The Draai, Vanstraatens and Kaaloog tributaries were selected as priority areas for B. motebensis (B. motebensis is considered to be the most vulnerable of all three species). The Draai tributary was selected due to the B. motebensis population within the tributary showing isolation from the rest of the tributary populations. In order to conserve B. motebensis from the Southern lineage, the Vanstraatens and Kaaloog tributaries were selected. Reasons for selecting these two specific tributaries within the Southern lineage were that the Vanstraatens tributary had unique alleles (three Evolutionary Significant Units) for B. motebensis and the Kaaloog tributary had high genetic diversity (HD = 0.889, ND2 gene) when compared to the other tributary populations. The Ribbok and Vanstraatens tributaries were selected as priority areas for the conservation of A. uranoscopus. The Ribbok tributary was selected as it showed isolation from the rest of the tributary populations, as seen with the Draai tributary (B. motebensis) and the Vanstraatens tributary was selected to represent the Western lineage as it had the highest diversity for both genes (ND2 and S7). The Ribbok tributary has the highest prioritisation when compared to the Vanstraatens tributary. Chiloglanis pretoriae occurs within the Draai, Vanstraatens, Ribbok and Kaaloog tributaries, therefore by prioritising these tributaries for conservation, C. pretoriae will in turn be conserved.
- Full Text:
- Date Issued: 2014
First Record of an Introduction of the Giant Pangasius, Pangasius sanitwongsei Smith 1931, Into an African River
- Mäkinen, Tuuli, Weyl, Olaf L F, Van der Walt, Kerry-Ann, Swartz, Ernst R
- Authors: Mäkinen, Tuuli , Weyl, Olaf L F , Van der Walt, Kerry-Ann , Swartz, Ernst R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/443340 , vital:74109 , https://hdl.handle.net/10520/EJC145782
- Description: A catfish captured in the Breede River (33°56'41.6"S 20°4'45.6"E) in South Africa was identified using morphological and genetic techniques as the giant pangasius, Pangasius sanitwongsei Smith 1931, a new record for South Africa. The wild-caught specimen was a genetic match to juveniles purchased from the pet trade, and most likely originated from a release by an aquarist. Pangasius sanitwongsei is not on the list of fishes currently permitted for import into South Africa, and its presence in the pet trade illustrates the difficulty associated with preventing illegal introductions.
- Full Text:
- Date Issued: 2013
- Authors: Mäkinen, Tuuli , Weyl, Olaf L F , Van der Walt, Kerry-Ann , Swartz, Ernst R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/443340 , vital:74109 , https://hdl.handle.net/10520/EJC145782
- Description: A catfish captured in the Breede River (33°56'41.6"S 20°4'45.6"E) in South Africa was identified using morphological and genetic techniques as the giant pangasius, Pangasius sanitwongsei Smith 1931, a new record for South Africa. The wild-caught specimen was a genetic match to juveniles purchased from the pet trade, and most likely originated from a release by an aquarist. Pangasius sanitwongsei is not on the list of fishes currently permitted for import into South Africa, and its presence in the pet trade illustrates the difficulty associated with preventing illegal introductions.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »