Phylogenetic radiation of the greenbottle flies (Diptera, Calliphoridae, Luciliinae).
- Williams, Kristin A, Lamb, Jennifer, Villet, Martin H
- Authors: Williams, Kristin A , Lamb, Jennifer , Villet, Martin H
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/441431 , vital:73887 , 10.3897/zookeys.568.6696
- Description: The subfamily Luciliinae is diverse and geographically widespread. Its four currently recognised genera (Dyscritomyia Grimshaw, 1901, Hemipyrellia Townsend, 1918, Hypopygiopsis Townsend 1916 and Lucilia Robineau-Desvoidy, 1830) contain species that range from saprophages to obligate parasites, but their pattern of phylogenetic diversification is unclear. The 28S rRNA, COI and Period genes of 14 species of Lucilia and Hemipyrellia were partially sequenced and analysed together with sequences of 11 further species from public databases. The molecular data confirmed molecular paraphyly in three species-pairs in Lucilia that hamper barcode identifications of those six species. Lucilia sericata and Lucilia cuprina were confirmed as mutual sister species. The placements of Dyscritomyia and Hypopygiopsis were ambiguous, since both made Lucilia paraphyletic in some analyses. Recognising Hemipyrellia as a genus consistently left Lucilia s.l. paraphyletic, and the occasionally-recognised (sub)genus Phaenicia was consistently paraphyletic, so these taxa should be synonymised with Lucilia to maintain monophyly.
- Full Text:
- Date Issued: 2016
- Authors: Williams, Kristin A , Lamb, Jennifer , Villet, Martin H
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/441431 , vital:73887 , 10.3897/zookeys.568.6696
- Description: The subfamily Luciliinae is diverse and geographically widespread. Its four currently recognised genera (Dyscritomyia Grimshaw, 1901, Hemipyrellia Townsend, 1918, Hypopygiopsis Townsend 1916 and Lucilia Robineau-Desvoidy, 1830) contain species that range from saprophages to obligate parasites, but their pattern of phylogenetic diversification is unclear. The 28S rRNA, COI and Period genes of 14 species of Lucilia and Hemipyrellia were partially sequenced and analysed together with sequences of 11 further species from public databases. The molecular data confirmed molecular paraphyly in three species-pairs in Lucilia that hamper barcode identifications of those six species. Lucilia sericata and Lucilia cuprina were confirmed as mutual sister species. The placements of Dyscritomyia and Hypopygiopsis were ambiguous, since both made Lucilia paraphyletic in some analyses. Recognising Hemipyrellia as a genus consistently left Lucilia s.l. paraphyletic, and the occasionally-recognised (sub)genus Phaenicia was consistently paraphyletic, so these taxa should be synonymised with Lucilia to maintain monophyly.
- Full Text:
- Date Issued: 2016
Contemporary precision, bias and accuracy of minimum post-mortem intervals estimated using development of carrion-feeding insects
- Villet, Martin H, Richards, Cameron S, Midgley, John M
- Authors: Villet, Martin H , Richards, Cameron S , Midgley, John M
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , book chapter
- Identifier: http://hdl.handle.net/10962/442769 , vital:74032 , ISBN 978-1-4020-9684-6 , https://doi.org/10.1007/978-1-4020-9684-6_7
- Description: Medicocriminal forensic entomology focuses primarily on providing evidence of the amount of time that a corpse or carcass has been exposed to colonization by insects, which helps to estimate the post mortem interval (PMI). Specifically, the estimate is of a minimum post mortem interval (PMImin), because death may occur a variable amount of time before colonization (Fig. 7.1); the maximum post mortem interval (PMImax) is estimated using the time that the person was last seen alive. Forensic entomology derives the bulk of its evidence from two sources: the ecological succession of carrion insect communities and the development of immature insects (Byrd and Castner 2001; Catts and Haskel 1990; Smith 1986). This chapter is concerned with assessing the confidence that can be placed in the accuracy of estimates derived from insect development. (Schoenly et al. 1996) dealt with this theme in succession-based estimates of PMImin.
- Full Text:
- Date Issued: 2010
- Authors: Villet, Martin H , Richards, Cameron S , Midgley, John M
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , book chapter
- Identifier: http://hdl.handle.net/10962/442769 , vital:74032 , ISBN 978-1-4020-9684-6 , https://doi.org/10.1007/978-1-4020-9684-6_7
- Description: Medicocriminal forensic entomology focuses primarily on providing evidence of the amount of time that a corpse or carcass has been exposed to colonization by insects, which helps to estimate the post mortem interval (PMI). Specifically, the estimate is of a minimum post mortem interval (PMImin), because death may occur a variable amount of time before colonization (Fig. 7.1); the maximum post mortem interval (PMImax) is estimated using the time that the person was last seen alive. Forensic entomology derives the bulk of its evidence from two sources: the ecological succession of carrion insect communities and the development of immature insects (Byrd and Castner 2001; Catts and Haskel 1990; Smith 1986). This chapter is concerned with assessing the confidence that can be placed in the accuracy of estimates derived from insect development. (Schoenly et al. 1996) dealt with this theme in succession-based estimates of PMImin.
- Full Text:
- Date Issued: 2010
Phylogenetics of advanced snakes (Caenophidia) based on four mitochondrial genes
- Kelly, Christopher M R, Barker, Nigel P, Villet, Martin H
- Authors: Kelly, Christopher M R , Barker, Nigel P , Villet, Martin H
- Date: 2003
- Language: English
- Type: Article
- Identifier: vital:6960 , http://hdl.handle.net/10962/d1012005
- Description: Phylogenetic relationships among advanced snakes ( Acrochordus + Colubroidea = Caenophidia) and the position of the genus Acrochordus relative to colubroid taxa are contentious. These concerns were investigated by phylogenetic analysis of fragments from four mitochondrial genes representing 62 caenophidian genera and 5 noncaenophidian taxa. Four methods of phylogeny reconstruction were applied: matrix representation with parsimony (MRP) supertree consensus, maximum parsimony, maximum likelihood, and Bayesian analysis. Because of incomplete sampling, extensive missing data were inherent in this study. Analyses of individual genes retrieved roughly the same clades, but branching order varied greatly between gene trees, and nodal support was poor. Trees generated from combined data sets using maximum parsimony, maximum likelihood, and Bayesian analysis had medium to low nodal support but were largely congruent with each other and with MRP supertrees. Conclusions about caenophidian relationships were based on these combined analyses. The Xenoderminae, Viperidae, Pareatinae, Psammophiinae, Pseudoxyrophiinae, Homalopsinae, Natricinae, Xenodontinae, and Colubrinae (redefined) emerged as monophyletic, whereas Lamprophiinae, Atractaspididae, and Elapidae were not in one or more topologies. A clade comprising Acrochordus and Xenoderminae branched closest to the root, and when Acrochordus was assessed in relation to a colubroid subsample and all five noncaenophidians, it remained associated with the Colubroidea. Thus, Acrochordus + Xenoderminae appears to be the sister group to the Colubroidea, and Xenoderminae should be excluded from Colubroidea. Within Colubroidea, Viperidae was the most basal clade. Other relationships appearing in all final topologies were (1) a clade comprising Psammophiinae, Lamprophiinae, Atractaspididae, Pseudoxyrophiinae, and Elapidae, within which the latter four taxa formed a subclade, and (2) a clade comprising Colubrinae, Natricinae, and Xenodontinae, within which the latter two taxa formed a subclade. Pareatinae and Homalopsinae were the most unstable clades.
- Full Text:
- Date Issued: 2003
- Authors: Kelly, Christopher M R , Barker, Nigel P , Villet, Martin H
- Date: 2003
- Language: English
- Type: Article
- Identifier: vital:6960 , http://hdl.handle.net/10962/d1012005
- Description: Phylogenetic relationships among advanced snakes ( Acrochordus + Colubroidea = Caenophidia) and the position of the genus Acrochordus relative to colubroid taxa are contentious. These concerns were investigated by phylogenetic analysis of fragments from four mitochondrial genes representing 62 caenophidian genera and 5 noncaenophidian taxa. Four methods of phylogeny reconstruction were applied: matrix representation with parsimony (MRP) supertree consensus, maximum parsimony, maximum likelihood, and Bayesian analysis. Because of incomplete sampling, extensive missing data were inherent in this study. Analyses of individual genes retrieved roughly the same clades, but branching order varied greatly between gene trees, and nodal support was poor. Trees generated from combined data sets using maximum parsimony, maximum likelihood, and Bayesian analysis had medium to low nodal support but were largely congruent with each other and with MRP supertrees. Conclusions about caenophidian relationships were based on these combined analyses. The Xenoderminae, Viperidae, Pareatinae, Psammophiinae, Pseudoxyrophiinae, Homalopsinae, Natricinae, Xenodontinae, and Colubrinae (redefined) emerged as monophyletic, whereas Lamprophiinae, Atractaspididae, and Elapidae were not in one or more topologies. A clade comprising Acrochordus and Xenoderminae branched closest to the root, and when Acrochordus was assessed in relation to a colubroid subsample and all five noncaenophidians, it remained associated with the Colubroidea. Thus, Acrochordus + Xenoderminae appears to be the sister group to the Colubroidea, and Xenoderminae should be excluded from Colubroidea. Within Colubroidea, Viperidae was the most basal clade. Other relationships appearing in all final topologies were (1) a clade comprising Psammophiinae, Lamprophiinae, Atractaspididae, Pseudoxyrophiinae, and Elapidae, within which the latter four taxa formed a subclade, and (2) a clade comprising Colubrinae, Natricinae, and Xenodontinae, within which the latter two taxa formed a subclade. Pareatinae and Homalopsinae were the most unstable clades.
- Full Text:
- Date Issued: 2003
- «
- ‹
- 1
- ›
- »