Phthalocyanine-nanoparticle conjugates supported on inorganic nanofibers as photocatalysts for the treatment of biological and organic pollutants as well as for hydrogen generation
- Authors: Mapukata, Sivuyisiwe
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanofibers , Nanoparticles , Zinc , Hydrogen , Organic water pollutants , Water Purification , Electrospinning , Photocatalysis , Photodegradation , Anti-infective agents
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192831 , vital:45268 , 10.21504/10962/192831
- Description: This thesis reports on the synthesis, photophysicochemical and photocatalytic properties of various zinc phthalocyanines (Pcs). For enhanced properties and catalyst support, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. For increased catalyst surface area and catalyst reusability, the Pcs and some of their conjugates were also supported on electrospun inorganic nanofibers i.e. SiO2, hematite (abbreviated Hem and has formula α-Fe2O3), ZnO and TiO2 nanofibers. The effect that the number of charges on a Pc has on its antimicrobial activities was evaluated by comparing the photoactivities of neutral, octacationic and hexadecacationic Pcs against S. aureus, E. coli and C. albicans. The extent of enhancement of their antimicrobial activities upon conjugation (through chemisorption) to Ag NPs was also studied in solution and when supported on SiO2 nanofibers. The results showed that the hexadecacationic complex 3 possessed the best antimicrobial activity against all three microorganisms, in solution and when supported on the SiO2 nanofibers. Covalent conjugation of Pcs with carboxylic acid moieties (complexes 4-6) to amine functionalised NPs (Cys-Ag, NH2-Fe3O4 and Cys-Fe3O4@Ag) resulted in enhanced singlet oxygen generation and thus antibacterial efficiencies. Comparison of the photodegradation efficiencies of semiconductor nanofibers (hematite, ZnO and TiO2) when bare and when modified with a Pc (complex 6) were evaluated. Modification of the nanofibers with the Pc resulted in enhanced photoactivities for the nanofibers with the hematite nanofibers being the best. Modification of the hematite nanofibers with two different Pcs i.e. monosubstituted (complex 5) and an asymmetrical tetrasubstituted Pc (complex 6) showed that complex 6 better enhanced the activity of the nanofibers. Evaluation of the hydrogen generation efficiencies of the bare and modified TiO2 nanofibers calcined at different temperatures demonstrated that the anatase nanofibers calcined at 500 oC possessed the best catalytic efficiency. The efficiency of the TiO2 nanofibers was enhanced in the presence of the Co and Pd NPs as well as a Pc (complex 7), with the extent of enhancement being the greatest for the nanofibers modified with the Pd NPs. The reported findings therefore demonstrate the versatility of applications of Pcs for different water purification techniques when supported on different nanomaterials. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Mapukata, Sivuyisiwe
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanofibers , Nanoparticles , Zinc , Hydrogen , Organic water pollutants , Water Purification , Electrospinning , Photocatalysis , Photodegradation , Anti-infective agents
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192831 , vital:45268 , 10.21504/10962/192831
- Description: This thesis reports on the synthesis, photophysicochemical and photocatalytic properties of various zinc phthalocyanines (Pcs). For enhanced properties and catalyst support, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. For increased catalyst surface area and catalyst reusability, the Pcs and some of their conjugates were also supported on electrospun inorganic nanofibers i.e. SiO2, hematite (abbreviated Hem and has formula α-Fe2O3), ZnO and TiO2 nanofibers. The effect that the number of charges on a Pc has on its antimicrobial activities was evaluated by comparing the photoactivities of neutral, octacationic and hexadecacationic Pcs against S. aureus, E. coli and C. albicans. The extent of enhancement of their antimicrobial activities upon conjugation (through chemisorption) to Ag NPs was also studied in solution and when supported on SiO2 nanofibers. The results showed that the hexadecacationic complex 3 possessed the best antimicrobial activity against all three microorganisms, in solution and when supported on the SiO2 nanofibers. Covalent conjugation of Pcs with carboxylic acid moieties (complexes 4-6) to amine functionalised NPs (Cys-Ag, NH2-Fe3O4 and Cys-Fe3O4@Ag) resulted in enhanced singlet oxygen generation and thus antibacterial efficiencies. Comparison of the photodegradation efficiencies of semiconductor nanofibers (hematite, ZnO and TiO2) when bare and when modified with a Pc (complex 6) were evaluated. Modification of the nanofibers with the Pc resulted in enhanced photoactivities for the nanofibers with the hematite nanofibers being the best. Modification of the hematite nanofibers with two different Pcs i.e. monosubstituted (complex 5) and an asymmetrical tetrasubstituted Pc (complex 6) showed that complex 6 better enhanced the activity of the nanofibers. Evaluation of the hydrogen generation efficiencies of the bare and modified TiO2 nanofibers calcined at different temperatures demonstrated that the anatase nanofibers calcined at 500 oC possessed the best catalytic efficiency. The efficiency of the TiO2 nanofibers was enhanced in the presence of the Co and Pd NPs as well as a Pc (complex 7), with the extent of enhancement being the greatest for the nanofibers modified with the Pd NPs. The reported findings therefore demonstrate the versatility of applications of Pcs for different water purification techniques when supported on different nanomaterials. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
The electrocatalytic response of metallophthalocyanines when clicked to electrodes and to nanomaterials
- Authors: Mpeta, Lekhetho Simon
- Date: 2021
- Subjects: Phthalocyanines , Nanostructured materials , Electrocatalysis , Nanoparticles , Environmental chemistry , Electrodes , Organic wastes -- Purification
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/172191 , vital:42174 , 10.21504/10962/172191
- Description: Conjugates of nanomaterials and metallophthalocyanines (MPcs) have been prepared and their electrocatalytic activity studied. The prepared nanomaterials are zinc oxide and silver nanoparticles, reduced graphene oxide nanosheets and semiconductor quantum dots. The MPcs used in this work are cobalt (II) (1a), manganese(III) (1b) and iron (II) (1c) 2,9(10),16(17),23(24)- tetrakis 4-((4-ethynylbenzyl) oxy) phthalocyaninato, 2,9(10),16(17),23(24)- tetrakis(5-pentyn-oxy) cobalt (II) phthalocyaninato (2), 9(10),16(17),23(24)- tris-[4-tert-butylphenoxy)-2- (4-ethylbezyl-oxy) cobalt (II) phthalocyaninato (3), 9(10),16(17),23(24)- tris-[4-tertbutylphenoxy)-2-(pent-4yn-yloxy)] cobalt (II) phthalocyaninato (4), cobalt (II) (5a) and manganese (III) (5b) 2,9(10),16(17),23(24)- tetrakis [4-(4-(5-chloro-1H-benzo [d]imidazol-2-yl)phenoxy] phthalocyaninato and 9(10),16(17),23(24)- tris tert butyl phenoxy- 2- [4-(4-(5-chloro-1H-benzo[d]imidazole-2-yl)phenoxy] cobalt (II) phthalocyaninato (6). Some of these MPcs (1a, 3 and 4) were directly clicked on azide grafted electrode, while some (1b, 1c, 2, 5a and 5b) were clicked to azide functionalised nanomaterials and then drop-dried on the electrodes. One phthalocyanine (5b) was drop-dried on the electrode then silver nanoparticles were electrodeposited on it taking advantage of metal-N bond. Scanning electrochemical microscopy, voltammetry, chronoamperometry, electrochemical impedance spectroscopy are among electrochemical methods used to characterise modified electrodes. Transmission electron microscopy, X-ray photoelectron spectroscopy, Xray diffractometry, Raman spectroscopy and infrared spectroscopy were employed to study surface functionalities, morphology and topography of the nanomaterials and complexes. Electrocatalytic activity of the developed materials were studied towards oxidation of 2-mercaptoethanol, hydrazine and hydrogen peroxide while the reduction study was based on oxygen and hydrogen peroxide. In general, the conjugates displayed superior catalytic activity when compared to individual materials. Complex 2 alone and when conjugated to zinc oxide nanoparticles were studied for their nonlinear optical behaviour. And the same materials were explored for their hydrazine detection capability. The aim of this study was to develop sensitive, selective and affordable sensors for selected organic waste pollutants. Conjugates were found to achieve the aim of the study compared to when individual materials were employed.
- Full Text:
- Date Issued: 2021
- Authors: Mpeta, Lekhetho Simon
- Date: 2021
- Subjects: Phthalocyanines , Nanostructured materials , Electrocatalysis , Nanoparticles , Environmental chemistry , Electrodes , Organic wastes -- Purification
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/172191 , vital:42174 , 10.21504/10962/172191
- Description: Conjugates of nanomaterials and metallophthalocyanines (MPcs) have been prepared and their electrocatalytic activity studied. The prepared nanomaterials are zinc oxide and silver nanoparticles, reduced graphene oxide nanosheets and semiconductor quantum dots. The MPcs used in this work are cobalt (II) (1a), manganese(III) (1b) and iron (II) (1c) 2,9(10),16(17),23(24)- tetrakis 4-((4-ethynylbenzyl) oxy) phthalocyaninato, 2,9(10),16(17),23(24)- tetrakis(5-pentyn-oxy) cobalt (II) phthalocyaninato (2), 9(10),16(17),23(24)- tris-[4-tert-butylphenoxy)-2- (4-ethylbezyl-oxy) cobalt (II) phthalocyaninato (3), 9(10),16(17),23(24)- tris-[4-tertbutylphenoxy)-2-(pent-4yn-yloxy)] cobalt (II) phthalocyaninato (4), cobalt (II) (5a) and manganese (III) (5b) 2,9(10),16(17),23(24)- tetrakis [4-(4-(5-chloro-1H-benzo [d]imidazol-2-yl)phenoxy] phthalocyaninato and 9(10),16(17),23(24)- tris tert butyl phenoxy- 2- [4-(4-(5-chloro-1H-benzo[d]imidazole-2-yl)phenoxy] cobalt (II) phthalocyaninato (6). Some of these MPcs (1a, 3 and 4) were directly clicked on azide grafted electrode, while some (1b, 1c, 2, 5a and 5b) were clicked to azide functionalised nanomaterials and then drop-dried on the electrodes. One phthalocyanine (5b) was drop-dried on the electrode then silver nanoparticles were electrodeposited on it taking advantage of metal-N bond. Scanning electrochemical microscopy, voltammetry, chronoamperometry, electrochemical impedance spectroscopy are among electrochemical methods used to characterise modified electrodes. Transmission electron microscopy, X-ray photoelectron spectroscopy, Xray diffractometry, Raman spectroscopy and infrared spectroscopy were employed to study surface functionalities, morphology and topography of the nanomaterials and complexes. Electrocatalytic activity of the developed materials were studied towards oxidation of 2-mercaptoethanol, hydrazine and hydrogen peroxide while the reduction study was based on oxygen and hydrogen peroxide. In general, the conjugates displayed superior catalytic activity when compared to individual materials. Complex 2 alone and when conjugated to zinc oxide nanoparticles were studied for their nonlinear optical behaviour. And the same materials were explored for their hydrazine detection capability. The aim of this study was to develop sensitive, selective and affordable sensors for selected organic waste pollutants. Conjugates were found to achieve the aim of the study compared to when individual materials were employed.
- Full Text:
- Date Issued: 2021
Determination of nonlinear optical properties of phthalocyanine regioisomers using computational models
- Date: 2020
- Subjects: Electrochemistry , Phthalocyanines , Nanoparticles , Nonlinear optics , Nonlinear optical spectroscopy , Refraction
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/166197 , vital:41337
- Description: This work investigates the effects of the nonlinear optical properties of four different constitutional isomers (C4h, C2v, Cs, and D2h) of a series of tetrasubstituted phthalocyanines (free-base 3-4-tert-butylphenoxyether phthalocyanines, free-base 4-4-tertbutylphenoxyether phthalocyanines, SnCl2 tetra substituted 3-4-tert-butylphenoxyether phthalocyanine, and SnCl2 tetra substituted 4-4-tert-butylphenoxyether phthalocyanine). The properties investigated were the real and imaginary components of the 3rd order hyperpolarizability, as well as the excited state absorption and refraction cross sections. The investigations were performed with a z-scan over a range of laser beam intensities. This work determined the imaginary component of the 3rd order hyperpolarizability for the free-base and SnCl2 3-4-tert-butylphenoxyether phthalocyanines and 4-4-tert-butylphenoxyether phthalocyanines to be highly dependent on the excited state cross sections. The refraction caused due to the real component of the 3rd order hyperpolarizability of the phthalocyanines was also investigated, however, the values found were strongly dependent on the laser beam intensity and the cause of this was investigated. A Five-level model was developed and run on GPGPU computing devices in order to isolate the absorption and refractive cross sections. Theeffects of the regio substitution on the excited state cross sections were also investigated, and the 1st singlet excited state and 1st triplet state absorption cross sections were calculated for all constitutional isomers. It was found that the symmetry of the constitutional isomers have a disproportionately large effect on the excited state absorption when compared to the ground state absorption. The nonlinear refractive properties of all constitutional isomers were also investigated, and the values of the parametric susceptibility are reported herein. The nonlinear refraction was found to have less effect than was seen in the nonlinear absorption. The 1st singlet excited state and 1st triplet state refractive cross sections of all constitutional isomer was determined. The results indicated that if more than one excited state was present and contributing to the nonlinear refraction, then more data than was collected here would be required. However, the 1st singlet excited state cross section were successfully determined for the free-base constitutional isomers. This work concluded that the region substitution affected the excited states more than the ground state.
- Full Text:
- Date Issued: 2020
- Date: 2020
- Subjects: Electrochemistry , Phthalocyanines , Nanoparticles , Nonlinear optics , Nonlinear optical spectroscopy , Refraction
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/166197 , vital:41337
- Description: This work investigates the effects of the nonlinear optical properties of four different constitutional isomers (C4h, C2v, Cs, and D2h) of a series of tetrasubstituted phthalocyanines (free-base 3-4-tert-butylphenoxyether phthalocyanines, free-base 4-4-tertbutylphenoxyether phthalocyanines, SnCl2 tetra substituted 3-4-tert-butylphenoxyether phthalocyanine, and SnCl2 tetra substituted 4-4-tert-butylphenoxyether phthalocyanine). The properties investigated were the real and imaginary components of the 3rd order hyperpolarizability, as well as the excited state absorption and refraction cross sections. The investigations were performed with a z-scan over a range of laser beam intensities. This work determined the imaginary component of the 3rd order hyperpolarizability for the free-base and SnCl2 3-4-tert-butylphenoxyether phthalocyanines and 4-4-tert-butylphenoxyether phthalocyanines to be highly dependent on the excited state cross sections. The refraction caused due to the real component of the 3rd order hyperpolarizability of the phthalocyanines was also investigated, however, the values found were strongly dependent on the laser beam intensity and the cause of this was investigated. A Five-level model was developed and run on GPGPU computing devices in order to isolate the absorption and refractive cross sections. Theeffects of the regio substitution on the excited state cross sections were also investigated, and the 1st singlet excited state and 1st triplet state absorption cross sections were calculated for all constitutional isomers. It was found that the symmetry of the constitutional isomers have a disproportionately large effect on the excited state absorption when compared to the ground state absorption. The nonlinear refractive properties of all constitutional isomers were also investigated, and the values of the parametric susceptibility are reported herein. The nonlinear refraction was found to have less effect than was seen in the nonlinear absorption. The 1st singlet excited state and 1st triplet state refractive cross sections of all constitutional isomer was determined. The results indicated that if more than one excited state was present and contributing to the nonlinear refraction, then more data than was collected here would be required. However, the 1st singlet excited state cross section were successfully determined for the free-base constitutional isomers. This work concluded that the region substitution affected the excited states more than the ground state.
- Full Text:
- Date Issued: 2020
Effect of the nature of nanoparticles on the photophysicochemical properties and photodynamic antimicrobial chemotherapy of phthalocyanines
- Authors: Magadla, Aviwe
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/123107 , vital:35406
- Description: In this work, the syntheses and characterisation of Zn monocaffeic acid tri–tert–butyl phthalocyanine (1), Zn monocarboxyphenoxy tri– tert–butylphenoxyl phthalocyanine (2), tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (3) and tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (5) are presented. Complexes 3 and 5 were further quartenised with 1,3- propanesultone to form corresponding complexes (4) and (6), respectively. Complexes 1 and 2 were covalently linked to amino functionalised nanoparticles (NPs). Complexes 3, 4, 5 and 6 where linked to oleic acid/oleylamine capped (OLA/OLM) silver-iron dimers (Ag-Fe3O4 OLA/OLM) and silver-iron core shell (Ag@Fe3O4 OLA/OLM) NPs via interaction between the nanoparticles and the imino group on the phthalocyanines. The phthalocyanine-NP conjugates afforded an increase in triplet quantum yields with a corresponding decrease in fluorescence quantum yield as compared to the phthalocyanine complexes alone. Complexes 3, 4 and their conjugates were then used for photodynamic antimicrobial chemotherapy on E. coli. The zwitterionic photosensitiser 4 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Date Issued: 2020
- Authors: Magadla, Aviwe
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/123107 , vital:35406
- Description: In this work, the syntheses and characterisation of Zn monocaffeic acid tri–tert–butyl phthalocyanine (1), Zn monocarboxyphenoxy tri– tert–butylphenoxyl phthalocyanine (2), tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (3) and tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (5) are presented. Complexes 3 and 5 were further quartenised with 1,3- propanesultone to form corresponding complexes (4) and (6), respectively. Complexes 1 and 2 were covalently linked to amino functionalised nanoparticles (NPs). Complexes 3, 4, 5 and 6 where linked to oleic acid/oleylamine capped (OLA/OLM) silver-iron dimers (Ag-Fe3O4 OLA/OLM) and silver-iron core shell (Ag@Fe3O4 OLA/OLM) NPs via interaction between the nanoparticles and the imino group on the phthalocyanines. The phthalocyanine-NP conjugates afforded an increase in triplet quantum yields with a corresponding decrease in fluorescence quantum yield as compared to the phthalocyanine complexes alone. Complexes 3, 4 and their conjugates were then used for photodynamic antimicrobial chemotherapy on E. coli. The zwitterionic photosensitiser 4 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Date Issued: 2020
In vitro susceptibility of Staphylococcus aureus to porphyrin-silver mediated photodynamic antimicrobial chemotherapy
- Authors: Shabangu, Samuel Malewa
- Date: 2020
- Subjects: Porphyrins , Nanoparticles , Photochemotherapy , Drug resistance in microorganisms , Staphylococcus aureus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167476 , vital:41484
- Description: This work reports on the syntheses and characterization of symmetrical and unsymmetrical porphyrin complexes namely, 5,10,15,20-tetra(4-pyridyl)-porphyrinato zinc(II) (1), 5,10,15,20-tetrathienyl porphyrinato zinc(II) (2), 5-(4-hydroxyphenyl)-10, 15, 20-tris(2-thienyl) porphyrinato zinc(II) (3), 5-(4-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)- porphyrinato zinc(II) (4), 5-(4-carboxyphenyl)-10,15,20-triphenyl-porphyrinato zinc(II) (5) and 5-(4-carboxyphenyl)-10, 15, 20-tris(2-thienyl)-porphyrinato zinc(II) (6). The synthesis of silver nanoparticles (AgNPs) was also undertaken in this research work. Complexes 1, 2, 3 and 6 were linked to oleic acid/oleylamine functionalized nanoparticles via self-assembly and 4-6 were linked via covalent interaction through an amide bond to glutathione capped AgNPs. The effect of nature of bond along with symmetry were investigated, of interest were the five membered thienyl substituents. The photophysical and photochemical behaviour of the complexes and their conjugates with AgNPs were investigated in dimethylformamide. The porphyrin and AgNPs conjugates afforded an increase in singlet oxygen quantum yield. Complexes 1-6 and their conjugates were used for photodynamic antimicrobial chemotherapy of Staphylococcus aureus. The antimicrobial studies were done in two different concentrations of 0.36 and 2.0 μg/mL. The thienyl substituted porphyrin complexes and their conjugates gave better photodynamic activity as compared to phenyl analogues
- Full Text:
- Date Issued: 2020
- Authors: Shabangu, Samuel Malewa
- Date: 2020
- Subjects: Porphyrins , Nanoparticles , Photochemotherapy , Drug resistance in microorganisms , Staphylococcus aureus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167476 , vital:41484
- Description: This work reports on the syntheses and characterization of symmetrical and unsymmetrical porphyrin complexes namely, 5,10,15,20-tetra(4-pyridyl)-porphyrinato zinc(II) (1), 5,10,15,20-tetrathienyl porphyrinato zinc(II) (2), 5-(4-hydroxyphenyl)-10, 15, 20-tris(2-thienyl) porphyrinato zinc(II) (3), 5-(4-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)- porphyrinato zinc(II) (4), 5-(4-carboxyphenyl)-10,15,20-triphenyl-porphyrinato zinc(II) (5) and 5-(4-carboxyphenyl)-10, 15, 20-tris(2-thienyl)-porphyrinato zinc(II) (6). The synthesis of silver nanoparticles (AgNPs) was also undertaken in this research work. Complexes 1, 2, 3 and 6 were linked to oleic acid/oleylamine functionalized nanoparticles via self-assembly and 4-6 were linked via covalent interaction through an amide bond to glutathione capped AgNPs. The effect of nature of bond along with symmetry were investigated, of interest were the five membered thienyl substituents. The photophysical and photochemical behaviour of the complexes and their conjugates with AgNPs were investigated in dimethylformamide. The porphyrin and AgNPs conjugates afforded an increase in singlet oxygen quantum yield. Complexes 1-6 and their conjugates were used for photodynamic antimicrobial chemotherapy of Staphylococcus aureus. The antimicrobial studies were done in two different concentrations of 0.36 and 2.0 μg/mL. The thienyl substituted porphyrin complexes and their conjugates gave better photodynamic activity as compared to phenyl analogues
- Full Text:
- Date Issued: 2020
Metallophthalocyanines linked to metal nanoparticles and folic acid for use in photodynamic therapy of cancer and photoinactivation of bacterial microorganisms.
- Authors: Matlou, Gauta Gold
- Date: 2020
- Subjects: Cancer -- Photochemotherapy , Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166540 , vital:41377
- Description: This thesis presents on the synthesis and characterization of novel asymmetric and symmetrical metallophthalocyanines (MPcs) substituted with carboxylic acid functional groups and centrally metallated with zinc and indium. The MPcs are further covalently linked to cysteine capped silver nanoparticles (cys-AgNPs), amino functionalized magnetic nanoparticles (AMNPs) and folic acid (FA) through an amide bond between the carboxylic group of MPcs and the amino group of FA, cys-AgNPs or AMNPs. The covalent linkage of MPcs to FA improved the water solubility of MPcs and allowed for singlet oxygen quantum yield determination in water. Asymmetric MPcs and their conjugates were found to have improved photochemical and photophysical properties compared to symmetrical MPcs and their conjugates. The heavy atom effect of AMNPs and AgNPs improved the triplet and singlet oxygen quantum yields of MPcs. MPcs and their conjugates (MPc-FA, MPc-AMNPs, MPc-AgNPs) were found to have lower in vitro dark cytotoxicity and higher photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. The water soluble MPc-FA had better PDT activity when compared to MPc-AMNPs due to the active targeting of folic acid-folate binding on cancer cell surface. MPcs and MPc-AgNPs conjugates also showed excellent in vitro cytotoxicity on S. aureus under light irradiation compared to dark cytotoxicity. The photosensitizing properties of MPcs and their conjugates are demonstrated for the first time in this thesis, both on breast cancer cells (MCF-7) through photodynamic therapy and on microorganisms (S. aureus) through photodynamic antimicrobial chemotherapy.
- Full Text:
- Date Issued: 2020
- Authors: Matlou, Gauta Gold
- Date: 2020
- Subjects: Cancer -- Photochemotherapy , Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166540 , vital:41377
- Description: This thesis presents on the synthesis and characterization of novel asymmetric and symmetrical metallophthalocyanines (MPcs) substituted with carboxylic acid functional groups and centrally metallated with zinc and indium. The MPcs are further covalently linked to cysteine capped silver nanoparticles (cys-AgNPs), amino functionalized magnetic nanoparticles (AMNPs) and folic acid (FA) through an amide bond between the carboxylic group of MPcs and the amino group of FA, cys-AgNPs or AMNPs. The covalent linkage of MPcs to FA improved the water solubility of MPcs and allowed for singlet oxygen quantum yield determination in water. Asymmetric MPcs and their conjugates were found to have improved photochemical and photophysical properties compared to symmetrical MPcs and their conjugates. The heavy atom effect of AMNPs and AgNPs improved the triplet and singlet oxygen quantum yields of MPcs. MPcs and their conjugates (MPc-FA, MPc-AMNPs, MPc-AgNPs) were found to have lower in vitro dark cytotoxicity and higher photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. The water soluble MPc-FA had better PDT activity when compared to MPc-AMNPs due to the active targeting of folic acid-folate binding on cancer cell surface. MPcs and MPc-AgNPs conjugates also showed excellent in vitro cytotoxicity on S. aureus under light irradiation compared to dark cytotoxicity. The photosensitizing properties of MPcs and their conjugates are demonstrated for the first time in this thesis, both on breast cancer cells (MCF-7) through photodynamic therapy and on microorganisms (S. aureus) through photodynamic antimicrobial chemotherapy.
- Full Text:
- Date Issued: 2020
Photocatalysis of 4-chloro and 4-nonylphenols using novel symmetric phthalocyanines and asymmetric porphyrin supported on polyacrylonitrite nanofibres
- Authors: Jones, Benjamin Martin
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Electrospinning , Porphyrins , Nanofibers , Photocatalysis , Photocatalysis -- Environmental aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164770 , vital:41163
- Description: This work explores the synthesis and characterisation of novel symmetrical phthalocyanines and novel asymmetric porphyrins that have been embedded or linked respectively,and electrospun into fibres for application in the photocatalysis of environmental pollutants. The phthalocyanines contain pyrrole moieties without hetero atom linkers to maintain a rigid structure. The porphyrin contains a carboxy moiety utilized to construct an amide bond between the complex and the polymer prior to the spinning process. The new compounds were characterized by elemental analyses, proton nuclear magnetic resonance (HNMR)Fourier-transform infrared spectroscopy (FTIR), MALDI-TOF and UV-vis spectroscopy. The general trends of fluorescence, triplet and singlet oxygen quantum yields are described as well as their appropriate lifetimes. The photocatalytic activity of phthalocyanine embedded fibres were compared against those that had been dyed. Unfortunately, during the degradation process, the dyed fibres leeched compound and the studies could not be continued. It was seen that the porphyrin fibres linked to the polymer showed the most efficient photocatalytic activity against 4-cholorphenol and 4-nonylphenol due to irradiation at lower wavelengths consequently having higher frequencies and transferring more energy.
- Full Text:
- Date Issued: 2020
- Authors: Jones, Benjamin Martin
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Electrospinning , Porphyrins , Nanofibers , Photocatalysis , Photocatalysis -- Environmental aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164770 , vital:41163
- Description: This work explores the synthesis and characterisation of novel symmetrical phthalocyanines and novel asymmetric porphyrins that have been embedded or linked respectively,and electrospun into fibres for application in the photocatalysis of environmental pollutants. The phthalocyanines contain pyrrole moieties without hetero atom linkers to maintain a rigid structure. The porphyrin contains a carboxy moiety utilized to construct an amide bond between the complex and the polymer prior to the spinning process. The new compounds were characterized by elemental analyses, proton nuclear magnetic resonance (HNMR)Fourier-transform infrared spectroscopy (FTIR), MALDI-TOF and UV-vis spectroscopy. The general trends of fluorescence, triplet and singlet oxygen quantum yields are described as well as their appropriate lifetimes. The photocatalytic activity of phthalocyanine embedded fibres were compared against those that had been dyed. Unfortunately, during the degradation process, the dyed fibres leeched compound and the studies could not be continued. It was seen that the porphyrin fibres linked to the polymer showed the most efficient photocatalytic activity against 4-cholorphenol and 4-nonylphenol due to irradiation at lower wavelengths consequently having higher frequencies and transferring more energy.
- Full Text:
- Date Issued: 2020
Nonlinear optical responses of targeted phthalocyanines when conjugated with nanomaterials or fabricated into polymer thin films
- Authors: Nwaji, Njemuwa Njoku
- Date: 2019
- Subjects: Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Thin films , Polymers , Nonlinear optics , Nonlinear optical spectroscopy , Nanostructured materials , Raman effect
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/71625 , vital:29926
- Description: A number of zinc, gallium and indium metallophthalocyanines (MPcs) with diverse substituents have been synthesized and characterized using various characterization tools such as proton nuclear magnetic resonance (1HNMR), matrix assisted laser desorption time of flight (MALDI-TOF) mass spectrometry, Fourier-transformed infra-red (FT-IR), Ultraviolet-visible (Uv-vis) spectrophotometry, magnetic circular dichroism and CHNS elemental analysis. The time dependent density functional theory was employed to probe the origin of spectroscopic information in these complexes. Complexes with gallium and indium as central metal showed higher triplet quantum yield compared to the zinc derivatives. Some of the MPcs were covalently linked to nanomaterials such as CdTe, CdTeSe, CdTeSe/ZnO, graphene quantum dots (GQDs) as well as metallic gold (AuNPs) and silver (AgNPs) nanoparticles. Others were either surface assembled onto AuNPs and AgNPs or embedded into polystyrene as polymer source. The phthalocyanine-nanomaterial composites (Pc-NMCs) were characterized with FT-IR, UV-visible spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD). The thickness of the thin films was determined by utilization of the knife edge attachment of the A Bruker D8 Discover X-ray diffraction. The optical limiting properties (using the open-aperture Z-scan technique) of the MPcs and the Pc-NMCs were investigated. The investigated MPcs complexes generally showed good optical limiting properties. The nonlinear optical response of the MPcs were improved in the presence of nanomaterials such as the semiconductor quantum dots (SQDs), graphene quantum dots (GQDs) as well as metallic AuNPs and AgNPs with MPc-QDs showing the best optical limiting behavior. The optical limiting properties of the MPcs were greatly enhanced in the presence of polymer thin films.
- Full Text:
- Date Issued: 2019
- Authors: Nwaji, Njemuwa Njoku
- Date: 2019
- Subjects: Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Thin films , Polymers , Nonlinear optics , Nonlinear optical spectroscopy , Nanostructured materials , Raman effect
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/71625 , vital:29926
- Description: A number of zinc, gallium and indium metallophthalocyanines (MPcs) with diverse substituents have been synthesized and characterized using various characterization tools such as proton nuclear magnetic resonance (1HNMR), matrix assisted laser desorption time of flight (MALDI-TOF) mass spectrometry, Fourier-transformed infra-red (FT-IR), Ultraviolet-visible (Uv-vis) spectrophotometry, magnetic circular dichroism and CHNS elemental analysis. The time dependent density functional theory was employed to probe the origin of spectroscopic information in these complexes. Complexes with gallium and indium as central metal showed higher triplet quantum yield compared to the zinc derivatives. Some of the MPcs were covalently linked to nanomaterials such as CdTe, CdTeSe, CdTeSe/ZnO, graphene quantum dots (GQDs) as well as metallic gold (AuNPs) and silver (AgNPs) nanoparticles. Others were either surface assembled onto AuNPs and AgNPs or embedded into polystyrene as polymer source. The phthalocyanine-nanomaterial composites (Pc-NMCs) were characterized with FT-IR, UV-visible spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD). The thickness of the thin films was determined by utilization of the knife edge attachment of the A Bruker D8 Discover X-ray diffraction. The optical limiting properties (using the open-aperture Z-scan technique) of the MPcs and the Pc-NMCs were investigated. The investigated MPcs complexes generally showed good optical limiting properties. The nonlinear optical response of the MPcs were improved in the presence of nanomaterials such as the semiconductor quantum dots (SQDs), graphene quantum dots (GQDs) as well as metallic AuNPs and AgNPs with MPc-QDs showing the best optical limiting behavior. The optical limiting properties of the MPcs were greatly enhanced in the presence of polymer thin films.
- Full Text:
- Date Issued: 2019
Photocatalytic treatment of organic and inorganic water pollutants using zinc phthalocyanine-cobalt ferrite magnetic nanoparticle conjugates
- Authors: Mapukata, Sivuyisiwe
- Date: 2019
- Subjects: Phthalocyanines , Cobalt ferrite , Zinc , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67603 , vital:29119
- Description: This work explores the synthesis and photophysicochemical properties of zinc phthalocyanines when conjugated to cobalt ferrite magnetic nanoparticles. Phthalocyanines with amine and carboxylic acid functional groups were synthesised so as to covalently link them via amide bonds to cobalt ferrite magnetic nanoparticles with carboxylic acid and amine groups, respectively. Spectroscopic and microscopic studies confirmed the formation and purity of the phthalocyanine-cobalt ferrite magnetic nanoparticle conjugates which exhibited enhanced triplet and singlet quantum yields compared to the phthalocyanines alone. The studies showed that the presence of cobalt ferrite nanoparticles significantly lowered fluorescence quantum yields and lifetimes. The conjugates not only showed much higher singlet oxygen quantum yields compared to the phthalocyanines alone but were also attractive because of their magnetic regeneration and hence reusability properties, making them appealing for photocatalytic applications. The photocatalytic ability of some of the phthalocyanines and their conjugates were then tested based on their photooxidation and photoreduction abilities on Methyl Orange and hexavalent chromium, respectively. For catalyst support, some of the zinc phthalocyanines, cobalt ferrite magnetic nanoparticles and their respective conjugates were successfully incorporated into electrospun polystyrene and polyamide-6 fibers. Spectral characteristics of the functionalized electrospun fibers confirmed the incorporation of the photocatalysts and indicated that the phthalocyanines and their respective conjuagates remained intact with their integrity maintained within the polymeric fiber matrices. The photochemical properties of the complexes were equally maintained within the electrospun fibers hence they were applied in the photooxidation of azo dyes using Orange G and Methyl Orange as model organic compounds.
- Full Text:
- Date Issued: 2019
- Authors: Mapukata, Sivuyisiwe
- Date: 2019
- Subjects: Phthalocyanines , Cobalt ferrite , Zinc , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67603 , vital:29119
- Description: This work explores the synthesis and photophysicochemical properties of zinc phthalocyanines when conjugated to cobalt ferrite magnetic nanoparticles. Phthalocyanines with amine and carboxylic acid functional groups were synthesised so as to covalently link them via amide bonds to cobalt ferrite magnetic nanoparticles with carboxylic acid and amine groups, respectively. Spectroscopic and microscopic studies confirmed the formation and purity of the phthalocyanine-cobalt ferrite magnetic nanoparticle conjugates which exhibited enhanced triplet and singlet quantum yields compared to the phthalocyanines alone. The studies showed that the presence of cobalt ferrite nanoparticles significantly lowered fluorescence quantum yields and lifetimes. The conjugates not only showed much higher singlet oxygen quantum yields compared to the phthalocyanines alone but were also attractive because of their magnetic regeneration and hence reusability properties, making them appealing for photocatalytic applications. The photocatalytic ability of some of the phthalocyanines and their conjugates were then tested based on their photooxidation and photoreduction abilities on Methyl Orange and hexavalent chromium, respectively. For catalyst support, some of the zinc phthalocyanines, cobalt ferrite magnetic nanoparticles and their respective conjugates were successfully incorporated into electrospun polystyrene and polyamide-6 fibers. Spectral characteristics of the functionalized electrospun fibers confirmed the incorporation of the photocatalysts and indicated that the phthalocyanines and their respective conjuagates remained intact with their integrity maintained within the polymeric fiber matrices. The photochemical properties of the complexes were equally maintained within the electrospun fibers hence they were applied in the photooxidation of azo dyes using Orange G and Methyl Orange as model organic compounds.
- Full Text:
- Date Issued: 2019
Photophysicochemical properties and surface-enhanced Raman scattering of phthalocyanine-nanoparticle conjugates
- Authors: Nwahara, Nnamdi
- Date: 2019
- Subjects: Boron compounds , Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Raman effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71647 , vital:29928
- Description: This work presents the synthesis, photophysical and photochemical characterization of a series of metallophthalocyanines (MPcs) and boron dipyrromethene (BODIPY) and their conjugates with either gold or silver nanoparticles (AuNPs or AgNPs) or graphene quantum dots (GQDs). The rich π-electron systems of GQDs and MPcs employed in this work enabled the coordination of MPcs to GQDs (either as pristine or modified) via the non-covalent (π-π stacking) method. GQDs, AuNPs and AgNPs were also functionalized with L-glutathione (GSH) in order to assist coupling to the Pcs or BODIPY dye. Spectroscopic and microscopic studies confirmed the formation of the respective nanoparticles (NPs) as well as the conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines (Pcs) or BODIPY alone. This work also shows that the incorporation of folic acid (FA) into Pcs-NPs composites leads to further enhancements in the singlet oxygen generation capabilities of the resulting conjugates, and so experimentally demonstrates for the first time, a synergy between FA and the respective nanoparticles (GQDs, AuNPs and AgNPs) in affecting the photophysical properties of Pcs complexes. GQDs and Pcs/GQDs hybrids were also herein decorated with AuNPs – metallic nanostructures that employ localized surface plasmon resonances to capture or radiate electromagnetic waves at optical frequencies. These nanostructures herein reported, have been shown to possess enhanced light-matter properties, enabling unique surface-enhanced Raman scattering (SERS) behaviours, with unprecedented enhancement factors of up to 30-fold. This work therefore, reports on the fabrication of Pc/GQDs/AuNPs hybrids and experimentally demonstrates their incredible potential as novel Raman-active PDT agents.
- Full Text:
- Date Issued: 2019
- Authors: Nwahara, Nnamdi
- Date: 2019
- Subjects: Boron compounds , Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Raman effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71647 , vital:29928
- Description: This work presents the synthesis, photophysical and photochemical characterization of a series of metallophthalocyanines (MPcs) and boron dipyrromethene (BODIPY) and their conjugates with either gold or silver nanoparticles (AuNPs or AgNPs) or graphene quantum dots (GQDs). The rich π-electron systems of GQDs and MPcs employed in this work enabled the coordination of MPcs to GQDs (either as pristine or modified) via the non-covalent (π-π stacking) method. GQDs, AuNPs and AgNPs were also functionalized with L-glutathione (GSH) in order to assist coupling to the Pcs or BODIPY dye. Spectroscopic and microscopic studies confirmed the formation of the respective nanoparticles (NPs) as well as the conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines (Pcs) or BODIPY alone. This work also shows that the incorporation of folic acid (FA) into Pcs-NPs composites leads to further enhancements in the singlet oxygen generation capabilities of the resulting conjugates, and so experimentally demonstrates for the first time, a synergy between FA and the respective nanoparticles (GQDs, AuNPs and AgNPs) in affecting the photophysical properties of Pcs complexes. GQDs and Pcs/GQDs hybrids were also herein decorated with AuNPs – metallic nanostructures that employ localized surface plasmon resonances to capture or radiate electromagnetic waves at optical frequencies. These nanostructures herein reported, have been shown to possess enhanced light-matter properties, enabling unique surface-enhanced Raman scattering (SERS) behaviours, with unprecedented enhancement factors of up to 30-fold. This work therefore, reports on the fabrication of Pc/GQDs/AuNPs hybrids and experimentally demonstrates their incredible potential as novel Raman-active PDT agents.
- Full Text:
- Date Issued: 2019
Physicochemical properties and photodynamic therapy activities of indium and zinc phthalocyanine-nanoparticle conjugates
- Authors: Dube, Edith
- Date: 2019
- Subjects: Indium , Zinc , Phthalocyanines , Breast -- Cancer -- Photochemotherapy , Nanoparticles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76506 , vital:30589
- Description: The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position are reported. The Pcs contain either zinc or indium as central metals and have carboxyphenoxy, phenoxy propanoic acid, benzothiazole phenoxy, thiophine ethoxy or di-O-isopropylidene-α-D-glucopyranose as ring substituents. The Pcs were linked to NPs via an amide bond or through self-assembly. The photophysics and photochemistry of the Pcs were assessed when alone and with conjugates. All the studied Pcs showed good photophysicochemical behaviour with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yield. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy–atom effect obtained from the former. Asymmetrical Pcs displayed higher triplet and singlet oxygen quantum yields than their symmetrical counterparts. The triplet quantum yield, generally increased on linkage to nanoparticles (NPs) due to the heavy–atom effect of gold and silver in NPs. The conjugates to gold nanospheres yielded higher triplet and singlet quantum yields than their gold nanotriangles counterparts due to the higher loading by the former probably encouraged by their relatively small particle size. The in vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. All complexes displayed poor phototoxicity with >50Îll viability at concentrations≤ 160μg/mL, however the conjugates showed<50% cell viabilityatconcentrations≤ 160μg/mLprobably due to the enhanced singlet oxygen quantum yield. The findings from this work show the importance of linking photosensitises such as phthalocyanines to metal nanoparticles for the enhancement ofsinglet oxygen quantum yield and ultimately the photodynamic effect.
- Full Text:
- Date Issued: 2019
- Authors: Dube, Edith
- Date: 2019
- Subjects: Indium , Zinc , Phthalocyanines , Breast -- Cancer -- Photochemotherapy , Nanoparticles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76506 , vital:30589
- Description: The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position are reported. The Pcs contain either zinc or indium as central metals and have carboxyphenoxy, phenoxy propanoic acid, benzothiazole phenoxy, thiophine ethoxy or di-O-isopropylidene-α-D-glucopyranose as ring substituents. The Pcs were linked to NPs via an amide bond or through self-assembly. The photophysics and photochemistry of the Pcs were assessed when alone and with conjugates. All the studied Pcs showed good photophysicochemical behaviour with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yield. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy–atom effect obtained from the former. Asymmetrical Pcs displayed higher triplet and singlet oxygen quantum yields than their symmetrical counterparts. The triplet quantum yield, generally increased on linkage to nanoparticles (NPs) due to the heavy–atom effect of gold and silver in NPs. The conjugates to gold nanospheres yielded higher triplet and singlet quantum yields than their gold nanotriangles counterparts due to the higher loading by the former probably encouraged by their relatively small particle size. The in vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. All complexes displayed poor phototoxicity with >50Îll viability at concentrations≤ 160μg/mL, however the conjugates showed<50% cell viabilityatconcentrations≤ 160μg/mLprobably due to the enhanced singlet oxygen quantum yield. The findings from this work show the importance of linking photosensitises such as phthalocyanines to metal nanoparticles for the enhancement ofsinglet oxygen quantum yield and ultimately the photodynamic effect.
- Full Text:
- Date Issued: 2019
Syntheses and photophysico-chemical properties of phthalocyanines in the presence of silica nanoparticles
- Authors: Peteni, Siwaphiwe
- Date: 2019
- Subjects: Phthalocyanines , Silica , Nanoparticles , Bioconjugates
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67592 , vital:29118
- Description: This thesis reports on the syntheses and characterizationof symmetrical (charged and neutral), asymmetrical (neutral) metallophthalocyanines (MPcs) and subphthalocyanines (SubPcs). The charged and neutral Pcs were physically doped onto silica nanoparticles (SiNPs). The asymmetrical MPc was also chemically linked to SiNPs. Spectroscopic and microscopic techniques were used to confirm the formation of SiNPs-MPc conjugates. The photophysics and photochemistry of the MPcs were assessed when alone and in conjugates (with SiNPs). The studies showed no significant changes in fluorescence quantum yields (ϕF) and fluorescence lifetimes (ϕF) of MPcs following doping except for 2-SiNPs (2 = Zn tetraaminophenoxyphthalocyanines) and 6-SiNPs (doped) (6 = Zn tris[(4-(pyridine-4-ylthio)2-thio-4-methylthiazol-5yl) acetic acid phthalocyanine) where there was a decrease in the ϕF value. Also for 1-SiNPs (1 = unsubstituted ZnPc) there was an elongation in τF which could be due to the protection offered by SiNPs. Both charged/neutral MPcs displayed high triplet quantum yields (ϕT) and singlet quantum yields (ϕΔ) following doping except for 2-SiNPs where there was a decrease in the latter. For 1-SiNPs there was an increase in ϕT but a decrease inϕΔ .There wasa decrease in ϕT and an increase in ϕΔfor4-SiNPs (4 = Zn tetrasulfophenoxyphthalocyanine), the decrease in ϕT could be due to the orientation of theMPc in SiNPs. An increase in both ϕT and ϕΔ for 6-SiNPs (linked) compared to 6-SiNPs (doped) was observed. Complex 5 (5 = Zn tetra-kis-(dodecylmercapto) phthalocyanine) showed a low ϕΔ value.
- Full Text:
- Date Issued: 2019
- Authors: Peteni, Siwaphiwe
- Date: 2019
- Subjects: Phthalocyanines , Silica , Nanoparticles , Bioconjugates
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67592 , vital:29118
- Description: This thesis reports on the syntheses and characterizationof symmetrical (charged and neutral), asymmetrical (neutral) metallophthalocyanines (MPcs) and subphthalocyanines (SubPcs). The charged and neutral Pcs were physically doped onto silica nanoparticles (SiNPs). The asymmetrical MPc was also chemically linked to SiNPs. Spectroscopic and microscopic techniques were used to confirm the formation of SiNPs-MPc conjugates. The photophysics and photochemistry of the MPcs were assessed when alone and in conjugates (with SiNPs). The studies showed no significant changes in fluorescence quantum yields (ϕF) and fluorescence lifetimes (ϕF) of MPcs following doping except for 2-SiNPs (2 = Zn tetraaminophenoxyphthalocyanines) and 6-SiNPs (doped) (6 = Zn tris[(4-(pyridine-4-ylthio)2-thio-4-methylthiazol-5yl) acetic acid phthalocyanine) where there was a decrease in the ϕF value. Also for 1-SiNPs (1 = unsubstituted ZnPc) there was an elongation in τF which could be due to the protection offered by SiNPs. Both charged/neutral MPcs displayed high triplet quantum yields (ϕT) and singlet quantum yields (ϕΔ) following doping except for 2-SiNPs where there was a decrease in the latter. For 1-SiNPs there was an increase in ϕT but a decrease inϕΔ .There wasa decrease in ϕT and an increase in ϕΔfor4-SiNPs (4 = Zn tetrasulfophenoxyphthalocyanine), the decrease in ϕT could be due to the orientation of theMPc in SiNPs. An increase in both ϕT and ϕΔ for 6-SiNPs (linked) compared to 6-SiNPs (doped) was observed. Complex 5 (5 = Zn tetra-kis-(dodecylmercapto) phthalocyanine) showed a low ϕΔ value.
- Full Text:
- Date Issued: 2019
Synthesis of indium phthalocyanines for photodynamic antimicrobial chemotherapy and photo-oxidation of pollutants
- Authors: Sindelo, Azole
- Date: 2019
- Subjects: Phthalocyanines , Azo dyes , Indium compounds , Photochemotherapy , Nanoparticles , Photodegradation , Pollutants , Water -- Purification
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67581 , vital:29116
- Description: Indium (III) octacarboxyl phthalocyanine (ClInOCPc) alone and when conjugated to magnetic nanoparticles (MNP-ClInOCPc), 2(3),9(10),16(17),23(24)-octapyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOPyPc) and its quaternized derivative 2(3),9(10),16(17),23(24)-octamethylpyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOMePyPc) were synthesized. All Pcs were tested for both photodynamic antimicrobial chemotherapy (PACT) of an unknown water sample and photo-degradation of methyl red (MR). The singlet quantum yield (ΦΔ) for the ClInOCPc and MNP-ClInOCPc in PAN polymer fibers were 0.36 and 0.20 respectively using ADMA as a quencher in water. The photo-inactivation of bacteria in a water sample with unknown microbes was tested, with the MNP-ClInOCPc inactivating 90.6 % of the microbes and the ClInOCPc with 84.8 %. When embedded to the polymer, there was 48% bacterial clearance for ClInOCPc and 64% clearance for the MNP-ClInOCPc. The rate of degradation of MR increased with decrease of the MR concentration, with the MNP-ClInOCPc having the fastest rate. For ClInOPyPc and ClInOMePyPc, the singlet quantum yields were 0.46 and 0.33 in dimethylformamide (DMF), respectively. The PACT activity of ClInOMePyPc (containing 8 positive charges) was compared to those of 9(10),16(17),23(24)-tri-N-methyl-4-pyridylsulfanyl-2(3)-(4-aminophenoxy) phthalocyaninato chloro indium (III) triiodide (1) (containing 3 positive charges) and 2-[4-(N-methylpyridyloxy) phthalocyaninato] chloroindium (III) iodide (2) (containing 4 positive charges). When comparing ClInOMePyPc, 1 and 2, the largest log reduction for E. coli were obtained for complex 2 containing four positive charges hence showing it is not always the charge that determines the PACT activity, but the bridging atom in the phthalocyanine plays a role.
- Full Text:
- Date Issued: 2019
- Authors: Sindelo, Azole
- Date: 2019
- Subjects: Phthalocyanines , Azo dyes , Indium compounds , Photochemotherapy , Nanoparticles , Photodegradation , Pollutants , Water -- Purification
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67581 , vital:29116
- Description: Indium (III) octacarboxyl phthalocyanine (ClInOCPc) alone and when conjugated to magnetic nanoparticles (MNP-ClInOCPc), 2(3),9(10),16(17),23(24)-octapyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOPyPc) and its quaternized derivative 2(3),9(10),16(17),23(24)-octamethylpyridylsulfanyl phthalocyaninato chloroindium (III) (ClInOMePyPc) were synthesized. All Pcs were tested for both photodynamic antimicrobial chemotherapy (PACT) of an unknown water sample and photo-degradation of methyl red (MR). The singlet quantum yield (ΦΔ) for the ClInOCPc and MNP-ClInOCPc in PAN polymer fibers were 0.36 and 0.20 respectively using ADMA as a quencher in water. The photo-inactivation of bacteria in a water sample with unknown microbes was tested, with the MNP-ClInOCPc inactivating 90.6 % of the microbes and the ClInOCPc with 84.8 %. When embedded to the polymer, there was 48% bacterial clearance for ClInOCPc and 64% clearance for the MNP-ClInOCPc. The rate of degradation of MR increased with decrease of the MR concentration, with the MNP-ClInOCPc having the fastest rate. For ClInOPyPc and ClInOMePyPc, the singlet quantum yields were 0.46 and 0.33 in dimethylformamide (DMF), respectively. The PACT activity of ClInOMePyPc (containing 8 positive charges) was compared to those of 9(10),16(17),23(24)-tri-N-methyl-4-pyridylsulfanyl-2(3)-(4-aminophenoxy) phthalocyaninato chloro indium (III) triiodide (1) (containing 3 positive charges) and 2-[4-(N-methylpyridyloxy) phthalocyaninato] chloroindium (III) iodide (2) (containing 4 positive charges). When comparing ClInOMePyPc, 1 and 2, the largest log reduction for E. coli were obtained for complex 2 containing four positive charges hence showing it is not always the charge that determines the PACT activity, but the bridging atom in the phthalocyanine plays a role.
- Full Text:
- Date Issued: 2019
Synthesis of pH responsive carriers for pulmonary drug delivery of anti-tuberculosis therapeutics: mesoporous silica nanoparticles and gelatin nanoparticles
- Authors: Ngoepe, Mpho Phehello
- Date: 2019
- Subjects: Drug delivery systems , Pulmonary pharmacology , Nanosilicon , Nanomedicine , Nanoparticles , Mesoporous materials , Silica , Tuberculosis -- Treatment
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76519 , vital:30590
- Description: Pulmonary drug delivery has historically been used as a route for delivery of therapeutics for respiratory disease management. However, while there are many advantages, there are also some serious limitations, arising mostly from the physical aspects of the inhaler devices. This is more profound when the devices are the driving force for controlling particle size generation, which results in non-uniform particles that end up being swallowed/wasted/expelled. One promising solution to overcome this limitation is to pre-formulate nano/microscale particles with a high degree of manufacturing control. Nanomedicine has advanced such that there are already several nanoparticle formulations commercially available. In the case of tuberculosis treatment, there is an opportunity not only to examine the use of nanoparticles for inhalation therapy, but to take advantage of the fact that the physiochemical environment of diseased tissue is significantly different to health lung tissue (lower pH and increased enzyme concentrations). We formulated two series of nanoparticles, whose design included moieties that could respond to pH and enzymes. To address variability, a Box-Behnken statistical approach was followed to construct mesoporous silica nanoparticles. These “hard nanoparticles” can entrap both lipophilic and hydrophilic drugs and were coated with a pH-sensitive hydrazone linker. It was observed that pH, calcination temperature and ratio of water to silica source played the greatest role, not only in controlling the physicochemical properties of the nanoparticles but also the drug release rate. A second series of nanoparticles were synthesized based on gelatin. This was done partly to add support the comparison of hard (inorganic silica) versus soft, organic particles, but also to enable enzymatic degradation and drug release. Again, diseased lung tissue expresses increased concentrations of gelatinase enzymes that could be used to stimulate drug release at the site of the disease. In addition, it was observed that the non-ionic surfactant C12E10 could interact with the protein via hydrophobic interactions thus affecting the gelatin folding. The folding states affected crosslinking with the pH responsive linker, which in turn affected the rate of drug release. To support the synthetic work, we sought to develop a unique 3D lung model directly from MRI data of tuberculosis infected lungs. This would not only permit the evaluation of our nanoparticles but could be used as a proxy for in-vivo studies in future to predict lung deposition in diseased lung. Thus, this study shows that it is possible to synthesize pH and enzyme sensitive nanoparticles for pulmonary drug delivery in the treatment and management of pulmonary tuberculosis. These particles could be loaded with either hydrophobic or hydrophilic drugs and their distribution in the airway modelled using an in-silico 3D model based on real data. Further development and verification of these results should improve treatment for pulmonary diseases and conditions such as tuberculosis. This is especially urgent in the face of multi-drug resistance and poor side effects profiles for current treatment.
- Full Text:
- Date Issued: 2019
- Authors: Ngoepe, Mpho Phehello
- Date: 2019
- Subjects: Drug delivery systems , Pulmonary pharmacology , Nanosilicon , Nanomedicine , Nanoparticles , Mesoporous materials , Silica , Tuberculosis -- Treatment
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76519 , vital:30590
- Description: Pulmonary drug delivery has historically been used as a route for delivery of therapeutics for respiratory disease management. However, while there are many advantages, there are also some serious limitations, arising mostly from the physical aspects of the inhaler devices. This is more profound when the devices are the driving force for controlling particle size generation, which results in non-uniform particles that end up being swallowed/wasted/expelled. One promising solution to overcome this limitation is to pre-formulate nano/microscale particles with a high degree of manufacturing control. Nanomedicine has advanced such that there are already several nanoparticle formulations commercially available. In the case of tuberculosis treatment, there is an opportunity not only to examine the use of nanoparticles for inhalation therapy, but to take advantage of the fact that the physiochemical environment of diseased tissue is significantly different to health lung tissue (lower pH and increased enzyme concentrations). We formulated two series of nanoparticles, whose design included moieties that could respond to pH and enzymes. To address variability, a Box-Behnken statistical approach was followed to construct mesoporous silica nanoparticles. These “hard nanoparticles” can entrap both lipophilic and hydrophilic drugs and were coated with a pH-sensitive hydrazone linker. It was observed that pH, calcination temperature and ratio of water to silica source played the greatest role, not only in controlling the physicochemical properties of the nanoparticles but also the drug release rate. A second series of nanoparticles were synthesized based on gelatin. This was done partly to add support the comparison of hard (inorganic silica) versus soft, organic particles, but also to enable enzymatic degradation and drug release. Again, diseased lung tissue expresses increased concentrations of gelatinase enzymes that could be used to stimulate drug release at the site of the disease. In addition, it was observed that the non-ionic surfactant C12E10 could interact with the protein via hydrophobic interactions thus affecting the gelatin folding. The folding states affected crosslinking with the pH responsive linker, which in turn affected the rate of drug release. To support the synthetic work, we sought to develop a unique 3D lung model directly from MRI data of tuberculosis infected lungs. This would not only permit the evaluation of our nanoparticles but could be used as a proxy for in-vivo studies in future to predict lung deposition in diseased lung. Thus, this study shows that it is possible to synthesize pH and enzyme sensitive nanoparticles for pulmonary drug delivery in the treatment and management of pulmonary tuberculosis. These particles could be loaded with either hydrophobic or hydrophilic drugs and their distribution in the airway modelled using an in-silico 3D model based on real data. Further development and verification of these results should improve treatment for pulmonary diseases and conditions such as tuberculosis. This is especially urgent in the face of multi-drug resistance and poor side effects profiles for current treatment.
- Full Text:
- Date Issued: 2019
The preparation of BODIPY and porphyrin dyes and their cyclodextrin inclusion complexes and Pluronic® F-127 encapsulation micelles for use in PDT and PACT
- Authors: Molupe, Nthabeleng
- Date: 2019
- Subjects: Dyes and dyeing -- Chemistry , Drug delivery systems , Fluorescence spectroscopy , Cancer -- Photochemotherapy , Photosensitizing compounds -- Therapeutic use , Cyclodextrins -- Biotechnology , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117574 , vital:34528
- Description: Several novel BODIPY dyes ((4,4′-difluoro-1,7-tetramethyl-3,5-(3-dithiophene)-2,6-diiodo-8-(4-dimethylamino)-4-bora-3a,4a-diaza-s-indacene (1c), 4,4′-difluoro-1,7-tetramethyl-3,5-(3 dithiophene)-2,6-diiodo-8-(4-methylthio)-4-bora-3a,4a-diaza-s-indacene (3c) and 4,4′-difluoro-1,7-tetramethyl-3,5-(4-dibenzyloxybenzene)-2,6-diiodo-8-(4-methylbenzoate)-4 bora-3a,4a-diaza-s-indacene (4c)) and porphyrins (tetraacenaphthylporphyrin (7a) and Sn(IV) tetraacenaphthylporphyrin (7b)) were synthesized and characterized. Previously reported BODIPY dyes (4,4′-difluoro-1,7-tetramethyl-3,5-(2-dihydroxy)-2,6-diiodo-8-(4-bromo)-4-bora-3a,4a-diaza-s-indacene (5) and 4,4′-difluoro-1,7-tetramethyl-3,5-(2-dithiophene)-2,6-diiodo-8-(phenyl)-4-bora-3a,4a-diaza-s-indacene (6)) were also used. Pluronic® F-127 and cyclodextrins were used as solubilizing drug delivery agents for the synthesized BODIPY dyes. The encapsulation of BODIPY dyes with Pluronic® F-127 micelles improved the water solubility of the BODIPY 5. Further modification of Pluronic® F-127 by coating with folate-functionalized chitosan for targeted delivery of BODIPY 1c and 6 was explored. The BODIPY dyes and their encapsulation complexes exhibited significant inhibition of human MCF-7 breast cancer cell growth. When cyclodextrins were used as nanocarriers, the inclusion complexes of BODIPY 4c with mβCD were found to enhance the water-solubility of the dye. Greater photoinactivation of Staphylococcus aureus was observed for the inclusion complexes when compared to the effect of solutions of non-complexed BODIPY 4c. The cyclodextrin inclusion complexes of porphyrin 7b with mβCD were also found to enhance the water-solubility of 7b. When the photodynamic effect was evaluated, solutions of the porphyrin alone and their inclusion complexes were found to have significant photodynamic effects against human MCF-7 breast cancer cells.
- Full Text:
- Date Issued: 2019
- Authors: Molupe, Nthabeleng
- Date: 2019
- Subjects: Dyes and dyeing -- Chemistry , Drug delivery systems , Fluorescence spectroscopy , Cancer -- Photochemotherapy , Photosensitizing compounds -- Therapeutic use , Cyclodextrins -- Biotechnology , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117574 , vital:34528
- Description: Several novel BODIPY dyes ((4,4′-difluoro-1,7-tetramethyl-3,5-(3-dithiophene)-2,6-diiodo-8-(4-dimethylamino)-4-bora-3a,4a-diaza-s-indacene (1c), 4,4′-difluoro-1,7-tetramethyl-3,5-(3 dithiophene)-2,6-diiodo-8-(4-methylthio)-4-bora-3a,4a-diaza-s-indacene (3c) and 4,4′-difluoro-1,7-tetramethyl-3,5-(4-dibenzyloxybenzene)-2,6-diiodo-8-(4-methylbenzoate)-4 bora-3a,4a-diaza-s-indacene (4c)) and porphyrins (tetraacenaphthylporphyrin (7a) and Sn(IV) tetraacenaphthylporphyrin (7b)) were synthesized and characterized. Previously reported BODIPY dyes (4,4′-difluoro-1,7-tetramethyl-3,5-(2-dihydroxy)-2,6-diiodo-8-(4-bromo)-4-bora-3a,4a-diaza-s-indacene (5) and 4,4′-difluoro-1,7-tetramethyl-3,5-(2-dithiophene)-2,6-diiodo-8-(phenyl)-4-bora-3a,4a-diaza-s-indacene (6)) were also used. Pluronic® F-127 and cyclodextrins were used as solubilizing drug delivery agents for the synthesized BODIPY dyes. The encapsulation of BODIPY dyes with Pluronic® F-127 micelles improved the water solubility of the BODIPY 5. Further modification of Pluronic® F-127 by coating with folate-functionalized chitosan for targeted delivery of BODIPY 1c and 6 was explored. The BODIPY dyes and their encapsulation complexes exhibited significant inhibition of human MCF-7 breast cancer cell growth. When cyclodextrins were used as nanocarriers, the inclusion complexes of BODIPY 4c with mβCD were found to enhance the water-solubility of the dye. Greater photoinactivation of Staphylococcus aureus was observed for the inclusion complexes when compared to the effect of solutions of non-complexed BODIPY 4c. The cyclodextrin inclusion complexes of porphyrin 7b with mβCD were also found to enhance the water-solubility of 7b. When the photodynamic effect was evaluated, solutions of the porphyrin alone and their inclusion complexes were found to have significant photodynamic effects against human MCF-7 breast cancer cells.
- Full Text:
- Date Issued: 2019
Electrode surface modification using metallophthalocyanines and metal nanoparticles : electrocatalytic activity
- Authors: Maringa, Audacity
- Date: 2015
- Subjects: Phthalocyanines , Nanoparticles , Electrocatalysis , Scanning electron microscopy , X-ray photoelectron spectroscopy , Electrochemistry , Scanning electrochemical microscopy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4541 , http://hdl.handle.net/10962/d1017921
- Description: Metallophthalocyanines and metal nanoparticles were successfully synthesized and applied for the electrooxidation of amitrole, nitrite and hydrazine individually or when employed together. The synthesized materials were characterized using the following techniques: predominantly scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemistry and scanning electrochemical microscopy (SECM). Different electrode modification methods were used to modify the glassy carbon substrates. The methods include adsorption, electrodeposition, electropolymerization and click chemistry. Modifying the glassy carbon substrate with MPc (electropolymerization) followed by metal nanoparticles (electrodeposition) or vice versa, made a hybrid modified surface that had efficient electron transfer. This was confirmed by electrochemical impedance studies with voltammetry measurements having lower detection potentials for the analytes. This work also describes for the first time the micropatterning of the glassy carbon substrate using the SECM tip. The substrate was electrografted with 4-azidobenzenediazonium salt and then the click reaction was performed using ethynylferrocene facilitated by Cu⁺ produced at the SECM tip. The SECM imaging was then used to show the clicked spot.
- Full Text:
- Date Issued: 2015
- Authors: Maringa, Audacity
- Date: 2015
- Subjects: Phthalocyanines , Nanoparticles , Electrocatalysis , Scanning electron microscopy , X-ray photoelectron spectroscopy , Electrochemistry , Scanning electrochemical microscopy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4541 , http://hdl.handle.net/10962/d1017921
- Description: Metallophthalocyanines and metal nanoparticles were successfully synthesized and applied for the electrooxidation of amitrole, nitrite and hydrazine individually or when employed together. The synthesized materials were characterized using the following techniques: predominantly scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemistry and scanning electrochemical microscopy (SECM). Different electrode modification methods were used to modify the glassy carbon substrates. The methods include adsorption, electrodeposition, electropolymerization and click chemistry. Modifying the glassy carbon substrate with MPc (electropolymerization) followed by metal nanoparticles (electrodeposition) or vice versa, made a hybrid modified surface that had efficient electron transfer. This was confirmed by electrochemical impedance studies with voltammetry measurements having lower detection potentials for the analytes. This work also describes for the first time the micropatterning of the glassy carbon substrate using the SECM tip. The substrate was electrografted with 4-azidobenzenediazonium salt and then the click reaction was performed using ethynylferrocene facilitated by Cu⁺ produced at the SECM tip. The SECM imaging was then used to show the clicked spot.
- Full Text:
- Date Issued: 2015
Photo-physicochemical studies and photodynamic therapy activity of indium and gallium phthalocyanines
- Tshangana, Charmaine Sesethu
- Authors: Tshangana, Charmaine Sesethu
- Date: 2015
- Subjects: Quantum dots , Nanoparticles , Photochemotherapy , Phthalocyanines
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4548 , http://hdl.handle.net/10962/d1017928
- Description: The potential toxicity of seven different types of quantum dots without shell (L-cysteine-CdTe, TGA-CdTe, MPA-CdTe, TGA-CdSe) and with the shell (GSH-CdSe@ZnS, GSH-CdTe@ZnS,) with different capping agents were evaluated. The growth inhibitory effects of the various quantum dots on human pancreatic BON cancerous cells were determined. The least cytotoxic of the various quantum dots synthesized and the one displaying the lowest growth inhibitory potential and no embryotoxicity was determined to be the GSH-CdSe@ZnS quantum dots. The GSH-CdSe@ZnS quantum dots were then conjugated to gallium, aluminium and indium octacarboxy phthalocyanine and the photophysical behaviour of the conjugates studied for potential use in photodynamic therapy and imaging applications. The sizes, morphology, thermal stability and confirmation of successful conjugation was determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), respectively. The study was extended by conjugating amino functionalized magnetic nanoparticles (Fe₃O₄) to indium octacarboxy phthalocyanine to study the photophysical behaviour of the conjugate as a potential bi-functional anti-cancer agent (hyperthermia and photodynamic therapy applications). A three-in-one multifunctional nanocomposite comprising of the quantum dots, magnetic nanoparticles and indium octacarboxy phthalocyanine was developed with the aim of developing a multifunctional composite that is able detect, monitor and treat cancer. All conjugates showed improved and enhanced photophysical behaviour. Finally, GSH-CdSe@ZnS conjugated to aluminium octacarboxy phthalocyanine was applied in human pancreatic carcinoid BON cells. The conjugates induced cell death dose-dependently.
- Full Text:
- Date Issued: 2015
- Authors: Tshangana, Charmaine Sesethu
- Date: 2015
- Subjects: Quantum dots , Nanoparticles , Photochemotherapy , Phthalocyanines
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4548 , http://hdl.handle.net/10962/d1017928
- Description: The potential toxicity of seven different types of quantum dots without shell (L-cysteine-CdTe, TGA-CdTe, MPA-CdTe, TGA-CdSe) and with the shell (GSH-CdSe@ZnS, GSH-CdTe@ZnS,) with different capping agents were evaluated. The growth inhibitory effects of the various quantum dots on human pancreatic BON cancerous cells were determined. The least cytotoxic of the various quantum dots synthesized and the one displaying the lowest growth inhibitory potential and no embryotoxicity was determined to be the GSH-CdSe@ZnS quantum dots. The GSH-CdSe@ZnS quantum dots were then conjugated to gallium, aluminium and indium octacarboxy phthalocyanine and the photophysical behaviour of the conjugates studied for potential use in photodynamic therapy and imaging applications. The sizes, morphology, thermal stability and confirmation of successful conjugation was determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), respectively. The study was extended by conjugating amino functionalized magnetic nanoparticles (Fe₃O₄) to indium octacarboxy phthalocyanine to study the photophysical behaviour of the conjugate as a potential bi-functional anti-cancer agent (hyperthermia and photodynamic therapy applications). A three-in-one multifunctional nanocomposite comprising of the quantum dots, magnetic nanoparticles and indium octacarboxy phthalocyanine was developed with the aim of developing a multifunctional composite that is able detect, monitor and treat cancer. All conjugates showed improved and enhanced photophysical behaviour. Finally, GSH-CdSe@ZnS conjugated to aluminium octacarboxy phthalocyanine was applied in human pancreatic carcinoid BON cells. The conjugates induced cell death dose-dependently.
- Full Text:
- Date Issued: 2015
Photodynamic antimicrobial chemotherapy activities of porphyrin- and phthalocyanine-platinum nanoparticle conjugates
- Authors: Managa, Muthumuni Elizabeth
- Date: 2015
- Subjects: Photochemotherapy , Anti-infective agents , Porphyrins , Phthalocyanines , Platinum , Nanoparticles , Bioconjugates , Electrospinning
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4539 , http://hdl.handle.net/10962/d1017919
- Description: This work reports on the conjugation of differently shaped Pt nanoparticles (PtNPs) with ClGa(III) 5,10,15,20-tetrakis-(4-carboxyphenyl) porphyrin (1) as well as chloro - (5,10,15,20-tetrakis (4- (4- carboxy phenycarbonoimidoyl) phenyl) porphyrinato) gallium(III) (2) The work also reports on platination of dihydroxosilicon octacarboxyphthalocyanine (OH)₂SiOCPc (3) to give dihydroxosilicontris(diaquaplatinum)octacarboxyphthalocyanine (OH)₂SiOCPc(Pt)₃ (4). The resulting conjugates were used for photodynamic antimicrobial chemotherapy against S. aureus, E. coli and C. albicans. The degree of photo-inactivation is dependent on concentration of the conjugates, light dose (fluence) and illumination time. The log reduction obtained for 1 when conjugated to cubic PtNPs was 4.64 log (which indicate 99.99 percent of the bacteria have been killed), which is much higher than 3.94 log unit for 1-hexagonal PtNPs and 3.31 log units for 1-unshaped PtNPs. Complex 2 conjugated to hexagonal PtNPs showed 18 nm red shift in the Soret band when compared to 2 alone. Complex 2 and 2-hexagonal PtNPs as well showed promising photodynamic antimicrobial chemotherapy (PACT) activity against S. aureus, E. coli and C. albicans in solution where the log reduction obtained was 4.92, 3.76, and 3.95 respectively for 2-hexagonal PtNPs. The singlet oxygen quantum yields obtained were higher at 0.56 for 2-hexagonl PtNPs in DMF while that of 2 was 0.52 in the same solvent. This resulted in improved PACT activity for 2-hexagonal PtNPs compared to 2. Complex 4 showed slight blue shifting of the absorption spectrum when compared to complex 3 The antimicrobial activity of 4 were promising as the highest log reduction value was observed when compared to the porphyrin conjugates.
- Full Text:
- Date Issued: 2015
- Authors: Managa, Muthumuni Elizabeth
- Date: 2015
- Subjects: Photochemotherapy , Anti-infective agents , Porphyrins , Phthalocyanines , Platinum , Nanoparticles , Bioconjugates , Electrospinning
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4539 , http://hdl.handle.net/10962/d1017919
- Description: This work reports on the conjugation of differently shaped Pt nanoparticles (PtNPs) with ClGa(III) 5,10,15,20-tetrakis-(4-carboxyphenyl) porphyrin (1) as well as chloro - (5,10,15,20-tetrakis (4- (4- carboxy phenycarbonoimidoyl) phenyl) porphyrinato) gallium(III) (2) The work also reports on platination of dihydroxosilicon octacarboxyphthalocyanine (OH)₂SiOCPc (3) to give dihydroxosilicontris(diaquaplatinum)octacarboxyphthalocyanine (OH)₂SiOCPc(Pt)₃ (4). The resulting conjugates were used for photodynamic antimicrobial chemotherapy against S. aureus, E. coli and C. albicans. The degree of photo-inactivation is dependent on concentration of the conjugates, light dose (fluence) and illumination time. The log reduction obtained for 1 when conjugated to cubic PtNPs was 4.64 log (which indicate 99.99 percent of the bacteria have been killed), which is much higher than 3.94 log unit for 1-hexagonal PtNPs and 3.31 log units for 1-unshaped PtNPs. Complex 2 conjugated to hexagonal PtNPs showed 18 nm red shift in the Soret band when compared to 2 alone. Complex 2 and 2-hexagonal PtNPs as well showed promising photodynamic antimicrobial chemotherapy (PACT) activity against S. aureus, E. coli and C. albicans in solution where the log reduction obtained was 4.92, 3.76, and 3.95 respectively for 2-hexagonal PtNPs. The singlet oxygen quantum yields obtained were higher at 0.56 for 2-hexagonl PtNPs in DMF while that of 2 was 0.52 in the same solvent. This resulted in improved PACT activity for 2-hexagonal PtNPs compared to 2. Complex 4 showed slight blue shifting of the absorption spectrum when compared to complex 3 The antimicrobial activity of 4 were promising as the highest log reduction value was observed when compared to the porphyrin conjugates.
- Full Text:
- Date Issued: 2015
Photophysical studies of Zinc phthalocyanine-silica nanoparticles conjugates
- Authors: Fashina, Adedayo
- Date: 2015
- Subjects: Nanoparticles , Phthalocyanines , Zinc , Silica , Photochemistry , Adsorption
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4537 , http://hdl.handle.net/10962/d1017917
- Description: This thesis reports on the synthesis and characterization of both symmetrical and asymmetrical Zinc phthalocyanine complexes. The complexes contained groups such as carboxylic, amino and alkyne for covalent grafting to the surface of silica nanoparticles. The use of symmetrical and asymmetrical complexes was geared towards comparing the non-specific binding of the symmetrical complexes to the specific binding observed in the asymmetrical complexes. The complexes were also doped within the silica matrix and compared to the surface grafted conjugates. The complexes and the conjugates were well characterized with a variety of techniques. The fluorescence lifetimes of the phthalocyanine complexes containing either terminal carboxylic groups or an alkyne group showed a mono-exponential decay while the amino containing phthalocyanine complexes gave a bi-exponential decay. A similar trend was observed for their respective conjugates. Some of the conjugates of the asymmetrical complexes showed a decrease in fluorescence lifetimes and a corresponding decrease in fluorescence quantum yields. The fluorescence quantum yields for all the symmetrical complexes studied showed either an improvement or retained the luminescence of the grafted phthalocyanine complex. Most of the conjugates showed a faster intersystem crossing time in comparison to the complexes alone. The grafted or doped conjugates containing symmetrical phthalocyanine complexes with carboxyl groups showed improvements both in fluorescence and triplet quantum yields. All the conjugates except two showed an increase in triplet lifetimes when compared to their respective phthalocyanine complexes. Optical nonlinearities of nine of the phthalocyanine complexes were studied and all the complexes showed characteristic reverse saturable absorption behavior. Complex 10 showed the most promising optical limiting behavior. The aggregation and dissolution studies of the conjugates were also carried out in a simulated biological medium and the silicon level detected was noticed to have increased with incubation time.
- Full Text:
- Date Issued: 2015
- Authors: Fashina, Adedayo
- Date: 2015
- Subjects: Nanoparticles , Phthalocyanines , Zinc , Silica , Photochemistry , Adsorption
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4537 , http://hdl.handle.net/10962/d1017917
- Description: This thesis reports on the synthesis and characterization of both symmetrical and asymmetrical Zinc phthalocyanine complexes. The complexes contained groups such as carboxylic, amino and alkyne for covalent grafting to the surface of silica nanoparticles. The use of symmetrical and asymmetrical complexes was geared towards comparing the non-specific binding of the symmetrical complexes to the specific binding observed in the asymmetrical complexes. The complexes were also doped within the silica matrix and compared to the surface grafted conjugates. The complexes and the conjugates were well characterized with a variety of techniques. The fluorescence lifetimes of the phthalocyanine complexes containing either terminal carboxylic groups or an alkyne group showed a mono-exponential decay while the amino containing phthalocyanine complexes gave a bi-exponential decay. A similar trend was observed for their respective conjugates. Some of the conjugates of the asymmetrical complexes showed a decrease in fluorescence lifetimes and a corresponding decrease in fluorescence quantum yields. The fluorescence quantum yields for all the symmetrical complexes studied showed either an improvement or retained the luminescence of the grafted phthalocyanine complex. Most of the conjugates showed a faster intersystem crossing time in comparison to the complexes alone. The grafted or doped conjugates containing symmetrical phthalocyanine complexes with carboxyl groups showed improvements both in fluorescence and triplet quantum yields. All the conjugates except two showed an increase in triplet lifetimes when compared to their respective phthalocyanine complexes. Optical nonlinearities of nine of the phthalocyanine complexes were studied and all the complexes showed characteristic reverse saturable absorption behavior. Complex 10 showed the most promising optical limiting behavior. The aggregation and dissolution studies of the conjugates were also carried out in a simulated biological medium and the silicon level detected was noticed to have increased with incubation time.
- Full Text:
- Date Issued: 2015
Phthalocyanine-nanoparticle conjugates for photodynamic therapy of cancer and phototransformation of organic pollutants
- Authors: Khoza, Phindile Brenda
- Date: 2015
- Subjects: Phthalocyanines , Nanoparticles , Photochemotherapy , Cancer -- Chemotherapy , Zinc oxide , Photocatalysis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4538 , http://hdl.handle.net/10962/d1017918
- Description: The synthesis and extensive spectroscopical characterization of novel phthalocyanines are reported. The new compounds were characterized by elemental analysis, FT-IR, ¹HNMR, mass spectrometry and UV–Vis spectroscopy. The new phthalocyanines showed remarkable photophysicochemical behaviour. The novel phthalocyanines were then conjugated to nanoparticles, silver and ZnO. The coupling of the novel Pcs to nanoparticles was through covalent bonding and ligand exchange. These conjugates were supported onto electrospun polystyrene fibers and chitosan microbeads for use as photocatalysts. The efficiency of the immobilized Pcs and Pc-nanoparticles was assessed by the phototrasfromation of organic pollutants, methyl orange and Rhodamine 6G as model dyes. Upon conjugating phthalocyanines to nanoparticles, there was a great increase in the rate of photodegradation of the model dyes. The photodynamic activity of the novel phthalocyanines upon conjugating to nanoparticles and selected targeting agents is also reported. The targeting agents employed in this study are folic acid and polylysine. Conjugating the phthalocyanines to folic acid or polylysine improved the solubility of the phthalocyanines in aqueous media. The potency of the conjugates was investigated on breast (MCF-7), prostate and melanoma cancer cell lines. The phthalocyanines showed no toxicity in the absence of light. However, upon illumination, a concentration dependent cellular decrease was observed.
- Full Text:
- Date Issued: 2015
- Authors: Khoza, Phindile Brenda
- Date: 2015
- Subjects: Phthalocyanines , Nanoparticles , Photochemotherapy , Cancer -- Chemotherapy , Zinc oxide , Photocatalysis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4538 , http://hdl.handle.net/10962/d1017918
- Description: The synthesis and extensive spectroscopical characterization of novel phthalocyanines are reported. The new compounds were characterized by elemental analysis, FT-IR, ¹HNMR, mass spectrometry and UV–Vis spectroscopy. The new phthalocyanines showed remarkable photophysicochemical behaviour. The novel phthalocyanines were then conjugated to nanoparticles, silver and ZnO. The coupling of the novel Pcs to nanoparticles was through covalent bonding and ligand exchange. These conjugates were supported onto electrospun polystyrene fibers and chitosan microbeads for use as photocatalysts. The efficiency of the immobilized Pcs and Pc-nanoparticles was assessed by the phototrasfromation of organic pollutants, methyl orange and Rhodamine 6G as model dyes. Upon conjugating phthalocyanines to nanoparticles, there was a great increase in the rate of photodegradation of the model dyes. The photodynamic activity of the novel phthalocyanines upon conjugating to nanoparticles and selected targeting agents is also reported. The targeting agents employed in this study are folic acid and polylysine. Conjugating the phthalocyanines to folic acid or polylysine improved the solubility of the phthalocyanines in aqueous media. The potency of the conjugates was investigated on breast (MCF-7), prostate and melanoma cancer cell lines. The phthalocyanines showed no toxicity in the absence of light. However, upon illumination, a concentration dependent cellular decrease was observed.
- Full Text:
- Date Issued: 2015