The development of a larval feeding regimen for dusky kob, Argyrosomus japonicus, with a specific focus on the effect of weaning period on larval development and survival
- Authors: Keet, Thomas
- Date: 2019
- Subjects: Argyrosomus japonicus , Argyrosomus , Argyrosomus japonicus -- Larvae , Argyrosomus -- Larvae , Argyrosomus japonicus -- Larvae -- Nutrition , Argyrosomus -- Larvae -- Nutrition
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/146577 , vital:38538
- Description: One of the biggest limiting factors in marine finfish aquaculture is the low survival rate of early-stage larvae. Most mortalities can be ascribed to the poor nutritional value of live feeds, sibling cannibalism, and various stressors that result in swim bladder hyperinflation and/or starvation during the larval stage. Research results vary on the best timing for the introduction of artificial feed for good survival and growth rate in dusky kob larvae. The main objective of this experiment was to improve survival and growth rate. The experiment focused on a new feeding regime that sought to wean larvae onto an artificial diet earlier than the current Argyrosomus japonicus standard (weaning commenced at 16 days after hatch (DAH) versus 20 days after hatch), based on findings and recommendations made by Musson & Kaiser (2014). Three trials were conducted, each with five replicates of the two treatments, namely the new feeding regime and the standard feeding regime in a fully randomised design. Samples from each tank were collected every two days for the duration of the trial. Morphometric measurements (standard length; body depth; eye diameter) obtained from these sample larvae were used to compare growth rates between treatments. The ratio of BD:SL was used to assess larval condition throughout each trial. Tank survival rates were calculated on the last day of each trial.The study indicated that in mean water temperatures ranging from 24.3 – 25.2 °C, dusky kob larvae can be weaned onto an artificial pellet diet from 16 - 21 DAH without any negative effects on growth, condition and survival. Results from the highest mean temperatures of Trial 2 show a better mean condition in the treatment group during the weaning period (p < 0.05). In Trial 3, with its lower mean water temperatures of 23.2 °C, larvae in both treatments showed stunted absolute growth rates of all biometrics when compared to results from the higher mean temperatures of Trials 1 and 2. During the first 6 days of Trial 3 larvae were in relatively poor condition, BD:SL ≤ 0.30. During this same period in Trials 1 and 2, mean BD:SL ≥ 0.31, suggesting that a BD:SL ratio of ≤ 0.30 in non-weaned dusky kob larvae is an indicator of a degree of starvation. A future study on the morphology and histology of the larval gastrointestinal tract, specifically the liver and intestines, and how this early weaning regime affects their ontogeny under differing temperature conditions this needed to investigate the validity of these initial data on dusky kob larvae condition.
- Full Text:
- Date Issued: 2019
Towards defining the tipping point of tolerance to CO2-induced ocean acidification for the growth, development and metabolism of larval dusky kob Argyrosomus japonicus (Pisces: Sciaenidae)
- Authors: Mpopetsi, Pule Peter
- Date: 2019
- Subjects: Argyrosomus japonicus , Argyrosomus , Argyrosomus japonicus -- Larvae , Argyrosomus -- Larvae -- Effect of water acidification on , Argyrosomus japonicus -- Larvae -- Nutrition , Argyrosomus -- Larvae -- Nutrition , Ocean acidification
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71602 , vital:29924
- Description: Increased CO2 production and the consequent ocean acidification (OA) have been identified as one of the greatest threats to both calcifying and non-calcifying marine organisms. Traditionally, marine fishes, as non-calcifying organisms, were considered to have a higher tolerance to near-future OA conditions owing to their well-developed ion regulatory mechanisms. However, recent studies provide evidence to suggest that they may not be as resilient to near-future OA conditions as previously thought. In addition, earlier life stages of marine fishes are thought to be less tolerant than juveniles and adults of the same species as they lack well-developed ion regulatory mechanisms for maintaining homeostasis. This study follows up on previous studies examining the effects of near-future OA on larval Argyrosomus japonicus, an estuarine-dependent marine fish species, in order to identify the tipping point of tolerance for the larvae of this species. These previous studies showed that elevated pCO2, predicted for the year 2100, had negative effects on growth, development and metabolism and ultimately, survival of larval A. japonicus from post-flexion stage. Larval A. japonicus in the present study were reared from egg up to 22 DAH (days after hatching) under three treatments. The three treatments, (pCO2 353 μatm; pH 8.03), (pCO2 451 μatm; pH 7.93) and (pCO2 602 μatm; pH 7.83) corresponded to levels predicted to occur in year 2050, 2068 and 2090 respectively under the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (IPCC RCP) 8.5 model. Size-at-hatch, growth, development and metabolic responses (standard and active metabolic rates and metabolic scope) were assessed and compared between the three treatments throughout the rearing period. Five earlier larval life stages (hatchling – flexion/post-flexion) were identified by the end of the experiment. There were no significant differences in size-at-hatch (P > 0.05), development or the active metabolic (P > 0.05) or metabolic scope (P > 0.05) of fish in the three treatments throughout the study. However, the standard metabolic rate was significantly higher in the year 2068 treatment but only at the flexion/post-flexion stage which could be attributed to differences in developmental rates (including the development of the gills) between the 2068 and the other two treatments. Overall, the metabolic scope was narrowest in the 2090 treatment, but varied according to life stage. Although not significantly different, metabolic scope in the 2090 treatment was noticeably lower at the flexion stage compared to the other two treatments, and the development appeared slower, suggesting that this could be the stage most prone to OA. The study concluded that, in isolation, OA levels predicted to occur between 2050 and 2090 will not negatively affect size-at-hatch, growth, development, and metabolic responses of larval A. japonicus up to 22 DAH (flexion/post-flexion stage). Taken together with the previous studies of the same species, the tipping point of tolerance (where negative impacts will begin) in larvae of the species appears to be between the years 2090 and 2100.
- Full Text:
- Date Issued: 2019