The electrocatalytic activity of metallophthalocyanines and their conjugates with carbon nanomaterials and metal tungstate nanoparticles
- Authors: Ndebele, Nobuhle
- Date: 2023-10-13
- Subjects: Phthalocyanines , Electrocatalysis , Nitrites , Dopamine , Catechol , Detection limit
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/431934 , vital:72816 , DOI 10.21504/10962/431933
- Description: In this dissertation, seventeen phthalocyanine complexes were synthesised. Of these, only four are known and have been published. These complexes were synthesised using the conventional statistical condensation method that involves refluxing the phthalonitrile(s) (4-((1,3-bis(dimethylamino)propan-2-yl)oxy)phthalonitrile, 4-(4-carboxyphenoxy)phthalonitrile, 4-(4-acetylphenoxy)phthalonitrile, dimethyl 5-(3,4-dicyanophenoxy)-isophthalate, 4-(4-(tert-butyl)phenoxy)phthalonitrile, 5-phenoxylpicolinic acid phthalonitrile 4-(4-formylphenoxy) phthalonitrile, and 4-(4-(3-oxo-3-phenylprop-1-enyl) phenoxy) phthalonitrile) with the metal salt and 1,8-diazabicyclo[5.4.0]undecane as a catalyst in a high-temperature solvent. And thereafter (when necessary), isolation and purification of the target compounds were achieved through the use of silica column chromatography. These compounds were characterised using various analytical techniques such as; ultraviolet-visible absorption, mass spectroscopy, and Fourier transform infrared spectra and elemental analysis. These techniques proved that the complexes were successfully synthesised and isolated as pure compounds. Carbon-based (graphene quantum dots and nitrogen-doped graphene quantum dots) and metal oxide (bismuth tungsten oxide and nickel tungsten oxide) nanomaterials were synthesised. Together with the purchased single-walled carbon nanotubes, these nanomaterials were conjugated to some of the MPc complexes via non-covalent (carbon-based nanomaterials) and covalent (metal oxides) linkage forming hybrid materials. These nanomaterials and hybrids were characterised using various analytical methods (ultraviolet-visible absorption, X-ray diffraction, Raman spectroscopy, thermographic analysis, and dynamic light scattering). Nanomaterials were utilised herein to determine their effect on the properties of MPc complexes and provide a synergistic effect in the hope of enhancing these properties. All complexes synthesised in this work (MPcs, nanomaterials and hybrids) were employed as electrocatalysts in electrochemical sensing. These electrocatalysts were embedded onto the glassy carbon electrode via an adsorption method known as drop-casting. The modified electrode surfaces were characterised using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electrochemical microscopy to determine various electrochemical parameters. These electrocatalysts were used in the detection of either nitrite, catechol and/or dopamine. The detection limits, sensitivities, kinetics and catalytic constants were among other parameters determined for each electrocatalyst. These electrocatalysts proved to be stable electrocatalysts that could potentially be used for practical applications. The determined parameters were comparable and sometimes better than those obtained in literature. , Thesis (PhD) -- Faculty of Science, Chemistry, 2023
- Full Text:
- Date Issued: 2023-10-13
Interaction of catechol O-methyltransferase with gold and silver nanoparticles
- Authors: Usman, Aminu
- Date: 2018
- Subjects: Parkinson's disease , Methyltransferases , Catechol , Nanoparticles
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/61818 , vital:28063 , DOI https://doi.org/10.21504/10962/61818
- Description: Catechol O-methyltransferase (S-adenosyl-Z-methionine: catechol O-methyltransferase; COMT; EC 2.1.1.6) is a ubiquitous enzyme that catalyses the transfer of a methyl group from the cofactor, S-adenosyl-Z-methionine (SAM) to a hydroxyl group of endogenous and exogenous catechol-containing moieties. The physiological role of this enzyme is the methylation and thereby inactivation of the catechol-containing bio-active and bio-toxic compounds, including catechol-neurotransmitters, catechol-estrogens and catechol-containing drugs. Activity of this enzyme is implicated in the treatment of Parkinson’s disease and is associated with other diseases including breast cancer and an array neuropsychological disorders, such as schizophrenia. This thesis explores the use of gold and silver nanoparticles (NPs) (AuNPs and AgNPs) to inhibit the catalytic activity of mammalian COMT. Because of its accessibility and availability, we initially investigated bovine soluble COMT (BSCOMT) from liver tissue. Bioinformatic analyses and structural modeling revealed high (>90%) sequence similarity between BSCOMT and human soluble COMT (HSCOMT). BSCOMT was partially purified to 7.78 fold, 1.65% yield and had a specific activity of 0.052 U/mg. It had pH and temperature optima of 8.5 and 40oC, respectively. The Km, Vmax, Kcat and Kcat/Km towards esculetin methylation were respectively 1.475±0.130 pM, 0.0353±0.001 pmol/ml/min, 1.748 x 10-2±5.0x10-4 min-1 and 1.18x10-2 M-1. min-1. HSCOMT was expressed in Escherichia coli BL21(DE3) which showed optimal activity for esculetin methylation at pH and temperature of 7.0 and 30°C, respectively. It was purified to 5.62 fold, 22.6% yield with a specific activity of 3.85 U/mg. HSCOMT kinetic plots, upon incubation of the reaction mixture at 30°C for 5 min before addition of SAM was hyperbolic with Km, Vmax, Kcat and Kcat/Km values of 1.79 pM, 0.412 pmol/ml/min, 2.08 min-1 and 1.165 M-1. min-1, respectively. AuNPs and AgNPs showed a concentration dependent inhibition of HSCOMT activity upon increasing the 5 min incubation time to 1 h. Interestingly, HSCOMT kinetics, with 1 h incubation at 30°C, showed a sigmoidal curve, as well as increased activity. Incubation of the reaction mixture in the presence of 60 pM AuNPs and/or AgNPs for 1 hreversed the observed sigmoidal to a hyperbolic curve, with kinetic parameters comparable to those of 5 min incubation. SDS-PAGE analyses of HSCOMT after the kinetic experiments showed the enzyme incubated for 5 min as a monomer, while that which was incubated for 1 h migrated substantially as dimer. However, the HSCOMT incubated for 1 h in the presence of 60 pM AuNPs and/or AgNPs migrated as a monomer. This indicated that the extension of the incubation period allowed the dimerization of HSCOMT, which exhibited sigmoidal kinetics and higher activity. The presence of NPs impeded the HSCOMT dimerization which decreased the activity. Varying the concentration of SAM suggested that SAM had an allosteric modulatory effect on HSCOMT. Absorption spectroscopy indicated adsorption of HSCOMT on the gold and silver NP surfaces and the formation of NPs-HSCOMT corona. Fluorescence spectroscopy showed that the interaction of HSCOMT with both gold and silver NPs was governed by a static quenching mechanism, implying the formation of a non-fluorescent fluorophore-NP complex at the ground state. Further fluorometric analyses indicated that both gold and silver NPs had contact with Trp143; that the interactions were spontaneous and were driven by electrostatic interactions. Fourier transform infrared spectroscopic studies showed the adsorption of HSCOMT of the NPs surfaces to cause relaxation of the enzyme’s B-sheet structures. Molecular docking studies indicated involvement of largely hydrophilic amino acids, with the interacting distances of less than 3.5A. These findings signify the potential of nanotechnology in the control of COMT catalytic activity for the management of the COMT-related disorders. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
Mannich base metal complexes and their thiocyanate analogues as catalysts in the oxidation of Catechol
- Authors: Ayeni, Ayowole Olaolu
- Date: 2018
- Subjects: Mannich bases , Catechol , Catechol -- Oxidation , Thiocyanates , Catalysts
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62339 , vital:28156
- Description: The study focused on the design of new Cu(II) and Fe(III) complexes, with or without thiocyanate (NCS-), as possible candidates of catechol oxidation using 3,5-di-tert-butyl catechol (3,5-DTBC) as substrate. Two classes of Mannich bases were studied depending on the active methylene group from which they were formed, being either p-cresol or acetaminophen. The ligands were characterised by 1H and 13C NMR spectroscopy. Crystal structures of three of the ligands are newly reported, along with detailed discussion of polymorphism observed in one of the ligands, and the nature of the hydrogen within the ligands in the solid state as well as in solution. The Mannich bases behaved as bidentate (NO), tridentate (NNO) and tetradentate (NNOO) ligands on coordination to Cu(II) and Fe(III) ions in which the hydroxyl group may be protonated or deprotonated. Coordination was determined by IR spectroscopy, investigating shifts in vOH, vC-O and in vCNC of the Mannich bases. The vCNC stretching frequencies v1 and v2 of asymmetrical piperazine Mannich bases were observed to shift upward in few cases upon complexation and this is attributed to (chair-boat) conformational change. The mode of coordination of the thiocyanate was determined by IR spectroscopy. Of the forty metal complexes investigated, six groups of metal complexes were identified as follows: (i) Ma(Ln)aClb-cH2O; (ii) Ma(HLn)a(NCS)aClb; (iii) Ma(Ln)a(NCS)aClb; (iv) Ma(HLn)aClb-cH2O; (v) Ma(Ln)a(NCS)a-cH2O; (vi) Ma(HLn)a(NCS)a-cH2O where a = 1 - 2 ; b = 1 - 4, c = 1 - 8. Molar conductivity values of 4.38 - 161.77 Q-1.cm2.mol-1 for the Cu(II) and Fe(III) complexes in DMSO showed that they range from non-electrolytes to 1:1 and 1:2 electrolytes. Electronic spectra for the ligands and the complexes were conducted in DMF and DMSO. The ligands are characterised by and n→n* and n→n* transitions. Intraligand charge transfer transitions peculiar to the nitro group were observed at about 430 nm for the nitro containing ligands. On coordination, these bands overshadowed the d-d transitions particularly for the nitro-Mannich bases. On complexation, ligand to metal charge transfer transitions associated with the hydroxyl were observed between 320 - 420 nm. Charge transfer transitions associated with the thiocyanates were also observed and discussed. The d-d transitions for high spin Fe(III) complexes are spin forbidden and generally uninformative. Those of Cu(II) are spin allowed and allow tentative structural proposals. Square planar and octahedral geometry are generally prevalent in the Cu(II) complexes with trigonal bipyramidal observed in few instances. The Fe(III) complexes are generally octahedral. Thirty-nine of the forty synthesised Cu(II) and Fe(III) complexes were catalytically active on the substrate (3,5-DTBC) in DMF with turnover rates (kcat) reported in the range of 1.86 ± 0.09 to 112.32 ± 3.72 h-1. From this pool of complexes, sixteen isostructural pairs were identified in terms of geometry, molecular formula and the source of the Mannich base and the following conclusions were made: The presence of thiocyanate in the metal complexes reduce catecholase activity; the Cu(II) complexes generally have better activity but the Fe(III) complexes become more relatively active with highly electron donating groups while the Cu(II) complexes become less; dinuclear complexes have greater activity than the mononuclear.
- Full Text:
- Date Issued: 2018
Function of a cloned polyphenolase in organic synthesis
- Authors: Naidoo, Michael Joseph
- Date: 1995
- Subjects: Polyphenols , Catechol , Streptomacyes , Organic compounds -- Synthesis , Mutagenesis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4042 , http://hdl.handle.net/10962/d1004103 , Polyphenols , Catechol , Streptomacyes , Organic compounds -- Synthesis , Mutagenesis
- Description: The enzyme polyphenolase, which catalyses the oxidation of phenols to catechols and subsequently dehydrogenates these to o-quinones, is widely distributed in nature. The multicopy plasmid vector pIJ702 contains a mel gene from Streptomyces antibioticus, that codes for the production of a polyphenol oxidase. The plasmid was isolated from Streptomyces lividans 66pIJ702 and subjected to a variety of mutagenic treatments in order to establish a structurefunction relationship for the polyphenolase enzymes. An attempt was made to engineer the polyphenolase enzyme by localized random mutagenesis in vitro of the mel gene on pIJ702, in order to alter properties like productivity, activity and substrate specificity. It was hoped to alter the amino acid sequence of the active site of the enzyme in order to facilitate catalysis in an organic environment. The plasmid was subsequently transformed into a plasmid-free Streptomyces strain, and enzyme production was carried out in batch culture systems, in order to determine the effect of the height treatment, and to isolate and propagate functional polyphenolase mutants for organic synthesis.
- Full Text:
- Date Issued: 1995