Life-history and stock assessment of Clarias Gariepinus in the Okavango Delta, Botswana
- Authors: Bokhutlo, Thethela
- Date: 2012
- Subjects: Catfishes -- Botswana -- Okavango River Delta , Clarias gariepinus , Aquaculture -- Botswana -- Okavango River Delta
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5297 , http://hdl.handle.net/10962/d1005142 , Catfishes -- Botswana -- Okavango River Delta , Clarias gariepinus , Aquaculture -- Botswana -- Okavango River Delta
- Description: Large catfishes (Clarias gariepinus & Clarias ngamensis) are not exploited commercially in the Okavango Delta, Botswana. They however constitute a large proportion of the gill net fishery catch (23 %) albeit as by-catch, coming second after cichlids (70 %). Monthly experimetal gill net sampling over 8 years showed that C. gariepinus was the most abundant species in the Okavango Delta by mass making up 37 % of the catch composition by fresh weight. Despite the relatively high abundance of C. gariepinus in the Okavango Delta, its status has never been fully assessed. For this reason, this study aimed to assess the status of C. gariepinus in the Okavango Delta with the particular goal to determine if the species could support a directed commercial gill net fishery. Investigation of the effects of the flood pulse on abundance of C. gariepinus showed that variability in water levels was the major driver of population abundance for this species. Three biological variables: (1) catch per unit effort (CPUE); (2) % catch composition and (3) Shannon's diversity index (H') exhibited a negative and significant relationship with the flood index within a year. The variation in these variables was statistically significant between months. There was a weak positive relationship between water levels and the biological variables between years suggesting increase in productivity of the system at high water levels without a lag period. Age and growth were determined using sectioned otoliths. Edge analysis showed that growth zone deposition occurred during the drawdown period in summer when water temperature and day length were increasing. The maximum recorded age was 15 years. Growth of this species was best described by the linear models (y = 21.50x + 427.39 mm LT; r² = 0.35) for females and (y = 23.79x + 440.83 mm LT; r² = 0.38) for males. The von Bertalanffy growth model described growth as Lt = 10000(1- exp(-0.002(t + 18.07))) mm LT for combined sexes Lt = 10000(1- exp( -0.002(t + 18.50))) mm LT , for females and Lt =908(1-exp(-0.076(t+7.95)))mmLT for males. Age at 50 % maturity was attained in the first year of life. Spawning occurred throughout the year with an apparent peak between November and April. The mean total annual mortality rate (Z) was 0.25 per year. The mean annual natural mortality rate (M) was 0.20 per year and fishing mortality (F) was calculated at 0.05 per year. The life history strategy of C. gariepinus was in between the periodic and opportunistic strategies. Therefore management of this species should be aimed at maintaining a healthy adult population and age structure. Since a large portion of the Okavango Delta is already protected and most other parts are also inaccessible to fishers there are enough spatial refugia for the species and the status quo should be maintained. Under this scenario, there is no need for regulation of the current mesh sizes because the species is harvested after maturity and replenishment of exploited populations will always occur from other parts of the system. Per recruit analyses indicate that the current fishing mortality maintains spawner biomass at levels greater than 90 % of pristine levels. Therefore a commercial fishery may be established using mesh 93 mm to maximize yield with a rotational harvesting strategy. Close monitoring is essential to ensure that re-colonization of overexploited habitats does indeed occur. Recreational angling and commercial gill net fishing need to be separated on a spatial and temporal scale during the feeding run to minimize potential conflicts.
- Full Text:
- Date Issued: 2012
- Authors: Bokhutlo, Thethela
- Date: 2012
- Subjects: Catfishes -- Botswana -- Okavango River Delta , Clarias gariepinus , Aquaculture -- Botswana -- Okavango River Delta
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5297 , http://hdl.handle.net/10962/d1005142 , Catfishes -- Botswana -- Okavango River Delta , Clarias gariepinus , Aquaculture -- Botswana -- Okavango River Delta
- Description: Large catfishes (Clarias gariepinus & Clarias ngamensis) are not exploited commercially in the Okavango Delta, Botswana. They however constitute a large proportion of the gill net fishery catch (23 %) albeit as by-catch, coming second after cichlids (70 %). Monthly experimetal gill net sampling over 8 years showed that C. gariepinus was the most abundant species in the Okavango Delta by mass making up 37 % of the catch composition by fresh weight. Despite the relatively high abundance of C. gariepinus in the Okavango Delta, its status has never been fully assessed. For this reason, this study aimed to assess the status of C. gariepinus in the Okavango Delta with the particular goal to determine if the species could support a directed commercial gill net fishery. Investigation of the effects of the flood pulse on abundance of C. gariepinus showed that variability in water levels was the major driver of population abundance for this species. Three biological variables: (1) catch per unit effort (CPUE); (2) % catch composition and (3) Shannon's diversity index (H') exhibited a negative and significant relationship with the flood index within a year. The variation in these variables was statistically significant between months. There was a weak positive relationship between water levels and the biological variables between years suggesting increase in productivity of the system at high water levels without a lag period. Age and growth were determined using sectioned otoliths. Edge analysis showed that growth zone deposition occurred during the drawdown period in summer when water temperature and day length were increasing. The maximum recorded age was 15 years. Growth of this species was best described by the linear models (y = 21.50x + 427.39 mm LT; r² = 0.35) for females and (y = 23.79x + 440.83 mm LT; r² = 0.38) for males. The von Bertalanffy growth model described growth as Lt = 10000(1- exp(-0.002(t + 18.07))) mm LT for combined sexes Lt = 10000(1- exp( -0.002(t + 18.50))) mm LT , for females and Lt =908(1-exp(-0.076(t+7.95)))mmLT for males. Age at 50 % maturity was attained in the first year of life. Spawning occurred throughout the year with an apparent peak between November and April. The mean total annual mortality rate (Z) was 0.25 per year. The mean annual natural mortality rate (M) was 0.20 per year and fishing mortality (F) was calculated at 0.05 per year. The life history strategy of C. gariepinus was in between the periodic and opportunistic strategies. Therefore management of this species should be aimed at maintaining a healthy adult population and age structure. Since a large portion of the Okavango Delta is already protected and most other parts are also inaccessible to fishers there are enough spatial refugia for the species and the status quo should be maintained. Under this scenario, there is no need for regulation of the current mesh sizes because the species is harvested after maturity and replenishment of exploited populations will always occur from other parts of the system. Per recruit analyses indicate that the current fishing mortality maintains spawner biomass at levels greater than 90 % of pristine levels. Therefore a commercial fishery may be established using mesh 93 mm to maximize yield with a rotational harvesting strategy. Close monitoring is essential to ensure that re-colonization of overexploited habitats does indeed occur. Recreational angling and commercial gill net fishing need to be separated on a spatial and temporal scale during the feeding run to minimize potential conflicts.
- Full Text:
- Date Issued: 2012
Colonisation theory and invasive biota : the Great Fish river, a case history
- Authors: Laurenson, Lawrie Jon Bain
- Date: 1986
- Subjects: Biological invasions -- South Africa -- Great Fish River , Clarias gariepinus , Barbus aeneus , Freshwater ecology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5338 , http://hdl.handle.net/10962/d1005905 , Biological invasions -- South Africa -- Great Fish River , Clarias gariepinus , Barbus aeneus , Freshwater ecology
- Description: Colonisation theory relative to introduced populations was examined with a view to determining the usefulness of theoretical concepts in the prediction of the success of an invasion by a species. To this end, the Great Fish River, with reference to species introduced by the Orange/Fish Tunnel, was used as a case history. It was concluded that theoretical descriptions of population growth, control and decline are useful only when considering individual ecosystems or species. The highly variable nature of species and environments nullifies attempts to simplify behavioural characteristics into a predictive framework. There is an abundance of terminology associated with introduced organisms and frequently many of these terms are used synonymously. Eleven terms have been defined in this thesis with a view to standardising terminology. Characteristics of species and environments which enhance their susceptibility to invasions by exotic ichthyofauna were discussed and summarised. Distribution data concerning exotic fish introduced into the Great Fish River by the Orange/Fish Tunnel has demonstrated that, with the exception of Clarias gariepinus, all remaining exotics have restricted distributions. Only Barbus aeneus appears to be extending its range down the drainage. Age, Growth, reproduction and condition data support the conclusion that, excluding B. aeneus and C. gariepinus, invasive species in the drainage are not performing well. Of the five invasive species (B. aeneus, Labeo capensis, L. umbratus, Gephyroglanis sclateri and Cyprinus carpio), only two have established populations (B. aeneus· and C. gariepinus). Labeo umbratus and C. carpio were present on the Great Fish River prior to the construction of the tunnel and populations of the species could not be distinguished. It was concluded that there is no evidence to suggest that exotic species introduced into the Great Fish River are having a deleterious effect on indigenous, endangered ichthyofauna. Monitoring of the drainage should be continued to ensure that a danger to indigenous species does not develop.
- Full Text:
- Date Issued: 1986
- Authors: Laurenson, Lawrie Jon Bain
- Date: 1986
- Subjects: Biological invasions -- South Africa -- Great Fish River , Clarias gariepinus , Barbus aeneus , Freshwater ecology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5338 , http://hdl.handle.net/10962/d1005905 , Biological invasions -- South Africa -- Great Fish River , Clarias gariepinus , Barbus aeneus , Freshwater ecology
- Description: Colonisation theory relative to introduced populations was examined with a view to determining the usefulness of theoretical concepts in the prediction of the success of an invasion by a species. To this end, the Great Fish River, with reference to species introduced by the Orange/Fish Tunnel, was used as a case history. It was concluded that theoretical descriptions of population growth, control and decline are useful only when considering individual ecosystems or species. The highly variable nature of species and environments nullifies attempts to simplify behavioural characteristics into a predictive framework. There is an abundance of terminology associated with introduced organisms and frequently many of these terms are used synonymously. Eleven terms have been defined in this thesis with a view to standardising terminology. Characteristics of species and environments which enhance their susceptibility to invasions by exotic ichthyofauna were discussed and summarised. Distribution data concerning exotic fish introduced into the Great Fish River by the Orange/Fish Tunnel has demonstrated that, with the exception of Clarias gariepinus, all remaining exotics have restricted distributions. Only Barbus aeneus appears to be extending its range down the drainage. Age, Growth, reproduction and condition data support the conclusion that, excluding B. aeneus and C. gariepinus, invasive species in the drainage are not performing well. Of the five invasive species (B. aeneus, Labeo capensis, L. umbratus, Gephyroglanis sclateri and Cyprinus carpio), only two have established populations (B. aeneus· and C. gariepinus). Labeo umbratus and C. carpio were present on the Great Fish River prior to the construction of the tunnel and populations of the species could not be distinguished. It was concluded that there is no evidence to suggest that exotic species introduced into the Great Fish River are having a deleterious effect on indigenous, endangered ichthyofauna. Monitoring of the drainage should be continued to ensure that a danger to indigenous species does not develop.
- Full Text:
- Date Issued: 1986
- «
- ‹
- 1
- ›
- »