Synthesis of gatifloxacin, an important fluoroquinolone antibiotic using continuous flow technology
- Authors: Moyo, McQuillan
- Date: 2024-04
- Subjects: Antibiotics , Drug resistance in microorganisms , Chemical processes
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10948/64204 , vital:73664
- Description: Gatifloxacin belongs to an important class of antibiotics known as fluoroquinolones (the fourth generation). Bristol-Myers Squibb (BMS) introduced gatifloxacin to the market in 1999 under the brand name Tequin® for treating respiratory tract infections. It has recently been widely employed as an ophthalmic solution for treating bacterial conjunctivitis. There is limited literature describing the complete synthesis of gatifloxacin; however, ciprofloxacin, a similar fluoroquinolone, has received much attention recently and is a good guide in the synthesis. Even though there are several similarities between ciprofloxacin and gatifloxacin, key reactions towards the synthesis of gatifloxacin have not been reported, which forms a knowledge gap, for instance, the three steps leading to the synthesis of the benzoyl chloride intermediate. It is estimated that 70-90 % of the active pharmaceutical ingredients (APIs) in drugs consumed in sub-Saharan Africa are imported, mainly from India, China and Europe. To reduce dependence and improve access to life-saving drugs, Africa needs to develop cutting-edge technology that is more advanced than traditional means. We envisage that employing continuous flow technology in synthesising gatifloxacin, previously developed in a batch setup, will offer an improved, future-proof process. Thus, this research aimed to create a more efficient multi-step continuous flow process for synthesising gatifloxacin compared to the current batch methods. The first chapter of this thesis provides an extensive literature review on the synthesis of gatifloxacin and its sister drug, ciprofloxacin. The foreground is based on the manufacture and consumption of APIs, particularly antibiotics. Continuous flow technology is also introduced and discussed as the solution to bridging the gap in Africa’s demand for API manufacturing, which significantly lags. Chapter two describes the results and discusses findings on the continuous flow synthesis of gatifloxacin. A seven-step process is described with reaction optimisation studies for each step, starting from 2,4,5-trifluoro-3-hydroxybenzoic acid. An alternative shorter route (with six steps) is also offered, incorporating microwave-assisted technology instead of the traditional batch process. We also describe several elegant multistep processes for synthesising gatifloxacin and its intermediates, achieved by combining several compatible, optimised steps. Subsequently, Chapter 3 describes all the experimental details of our research. In this study, efficient continuous flow procedures were developed to synthesise gatifloxacin. The seven-step continuous flow procedure we developed afforded gatifloxacin (54 % overall isolated yield) in a total residence time of 15.6 mins, a significant improvement from the reported batch process (52 % overall yield and over 103 hours reaction time). , Thesis (PhD) -- Faculty of Science, School of Biomolecular & Chemical Sciences, 2024
- Full Text:
- Date Issued: 2024-04
In silico characterization of missense mutations in infectious diseases: case studies of tuberculosis and COVID-19
- Authors: Barozi, Victor
- Date: 2023-10-13
- Subjects: Microbial mutation , COVID-19 (Disease) , Drug resistance in microorganisms , Antitubercular agents , Tuberculosis , Molecular dynamics , Single nucleotide polymorphisms
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/431626 , vital:72791 , DOI 10.21504/10962/431626
- Description: One of the greatest challenges facing modern medicine and the global public health today is antimicrobial drug resistance (AMR). This “silent pandemic,” as coined by the world health organization (WHO), is steadily increasing with an estimated 4.95 million mortalities attributed to AMR in 2019, 1.27 million of which were directly linked to AMR. Some of the contributors to AMR include self-prescription, drug overuse, sub-optimal drug prescriptions by health workers, and inaccessibility to drugs, especially in remote areas, which leads to poor adherence. The situation is aggravated by the upsurge of new zoonotic infections like the coronavirus disease 2019, which present unique challenges and take the bulk of resources hence stunting the fight against AMR. Quite alarming still is our current antimicrobial arsenal, which hasn’t had any novel antimicrobial drug discovery/addition, of a new class, since the 1980s. This puts a burden on the existing broad-spectrum antimicrobial drugs which are already struggling against multi-drug resistant strains like multi-drug resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). Besides the search for new antimicrobial agents, the other avenue for addressing AMR is studying drug resistance mechanisms, especially single nucleotide polymorphisms (SNPs), that change drug target characteristics. With the advancement of computational power and data storage resources, computational approaches can be applied in mutational studies to provide insight into the drug resistance mechanisms with an aim to inform future drug design and development. Therefore, in the first part of this thesis, we employ integrative in silico approaches, including 3D structure modeling, molecular dynamic (MD) simulations, comparative essential dynamics (ED), and protein network analysis approaches i.e., dynamic residue network (DRN) analysis to decipher drug resistance mechanisms in tuberculosis (TB). This involved an investigation of the drug resistance mutations in the catalase-peroxidase (KatG) and pyrazinamidase (MtPncA) enzymes which are responsible for activation of TB first-line drugs; Isoniazid (INH) and Pyrazinamide (PZA), respectively. In the case of KatG, eleven high confidence (HC) KatG mutations associated with a high prevalence of phenotypic INH resistance were identified and their 3D structures modeled before subjecting them to MD simulations. Global analysis showed an unstable KatG structure and active site environment in the mutants compared to the wildtype. Active site dynamics in the mutants compromised cofactor (heme) interactions resulting in less bonds/interactions compared to the wildtype. Given the importance of the heme, reduced interactions affect enzyme function. Trajectory analysis also showed asymmetric protomer behavior both in the wildtype and mutant systems. DRN analysis identified the KatG dimerization domain and C-terminal domain as functionally important and influential in the enzyme function as per betweenness centrality and eigenvector centrality distribution. In the case of the MtPncA enzyme, our main focus was on understanding the MtPncA binding ability of Nicotinamide (an analogue of PZA) in comparison to PZA, especially in the presence of 82 resistance conferring MtPncA mutations. Like in KatG, the mutant structures were modeled and subjected to MD simulations and analysis. Interestingly, more MtPncA mutants favored NAM interactions compared to PZA i.e., 34 MtPncA mutants steadily coordinated NAM compared to 21 in the case of PZA. Trajectory and ligand interaction analysis showed how increased active site lid loop dynamics affect the NAM binding, especially in the systems with the active site mutations i.e., H51Y, W68R, C72R, L82R, K96N, L159N, and L159R. This led to fewer protein-ligand interactions and eventually ligand ejection. Network analysis further identified the protein core, metal binding site (MBS), and substrate binding site as the most important regions of the enzyme. Furthermore, the degree of centrality analysis showed how specific MtPncA mutations i.e., C14H, F17D, and T412P, interrupt intra-protein communication from the MtPncA core to the MBS, affecting enzyme activity. The analysis of KatG and MtPncA enzyme mutations not only identified the effects of mutations on enzyme behaviour and communication, but also established a framework of computational approaches that can be used for mutational studies in any protein. Besides AMR, the continued encroachment of wildlife habitats due to population growth has exposed humans to wildlife pathogens leading to zoonotic diseases, a recent example being coronavirus disease 2019 (COVID-19). In the second part of the thesis, the established computational approaches in Part 1, were employed to investigate the changes in inter-protein interactions and communication patterns between the severe acute respiratory coronavirus 2 (SARS-CoV-2) with the human host receptor protein (ACE2: angiotensin-converting enzyme 2) consequent to mutations in the SARS-CoV-2 receptor binding domain (RBD). Here, the focus was on RBD mutations of the Omicron sub-lineages. We identified four Omicron-sub lineages with RBD mutations i.e., BA.1, BA.2, BA.3 and BA.4. Each sub-lineage mutations were modeled into RBD structure in complex with the hACE2. MD analysis of the RBD-hACE2 complex highlighted how the RBD mutations change the conformational flexibility of both the RBD and hACE2 compared to the wildtype (WT). Furthermore, DRN analysis identified novel allosteric paths composed of residues with high betweenness and eigenvector centralities linking the RBD to the hACE2 in both the wildtype and mutant systems. Interestingly, these paths were modified with the progression of Omicron sub-lineages, highlighting how the virus evolution affects protein interaction. Lastly, the effect of mutations on S RBD and hACE2 interaction was investigated from the hACE2 perspective by focusing on mutations in the hACE2 protein. Here, naturally occurring hACE2 polymorphisms in African populations i.e., S19P, K26R, M82I, K341R, N546D, and D597Q, were identified and their effects on RBD-hACE2 interactions investigated in presence of the Omicron BA.4/5 RBD mutations. The hACE2 polymorphisms subtly affected the complex dynamics; however, RBD-hACE2 interaction analysis showed that hACE2 mutations effect the complex formation and interaction. Here, the K26R mutation favored RBD-hACE2 interactions, whereas S19P resulted in fewer inter-protein interactions than the reference system. The M82I mutation resulted in a higher RBD-hACE2 binding energy compared to the wildtype meaning that the mutation might not favor RBD binding to the hACE2. On the other hand, K341R had the most RBD-hACE2 interactions suggesting that it probably favors RBD binding to the hACE2. N546D and D597Q had diminutive differences to the reference system. Interestingly, the network of high betweenness centrality residues linking the two proteins, as seen in the previous paragraph, were maintained/modified in presence of hACE2 mutations. HACE2 mutations also changed the enzyme network patterns resulting in a concentration of high eigenvector centrality residues around the zinc-binding and active site region, ultimately influencing the enzyme functionality. Altogether, the thesis highlights fundamental structural and network changes consequent to mutations both in TB and COVID-19 proteins of interest using in silico approaches. These approaches not only provide a new context on impact of mutations in TB and COVID target proteins, but also presents a framework that be implemented in other protein mutation studies. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2023
- Full Text:
- Date Issued: 2023-10-13
Synthesis of cannibigerol, an antibiotic for methycillin resistant staphylococcus aureus, in continuous flow system
- Authors: Koeberg, Bryce
- Date: 2022-04
- Subjects: Drug resistance in microorganisms , Cannabis -- Therapeutic use -- South Africa
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10948/55866 , vital:54395
- Description: This study focuses on the development of a synthetic version of the cannabinoid cannabigerol (CBG) through continuous flow systems. The compound has exhibited antibiotic properties that have been proven to be a potent killer of gram-positive methicillin-resistant Staphylococcus aureus that drive repeat infections. The cannabinoid kills the superbug by disrupting the cell wall integrity of cells that are drug resistant. Research suggests that CBG is not effective against gram-negative multi-drug resistant bacteria. However, when CBG is administered with polymyxin B, an antibiotic that disrupts the outer membrane of gram-negative bacteria the cannabinoid compound wipes out the drug-resistant gram-negative bacteria, thus revealing the extensive medicinal potential of cannabigerol. Cannabinoids, such as CBG, are present in low yields in the plant, depending on the extraction method, usually less than 5% in most strains. Natural medicines have a low amount of active ingredients due to the lab intensive and time-consuming extraction and isolation process; this has hindered the application of natural products in drug development. A major health concern of the human consumption of cannabis plant extracted cannabinoids is that the plant may be contaminated with microbes, heavy metals and pesticides due to the lack of regulation. Thus, it is proposed that these cannabinoids are synthetically produced through the integration of microfluidic technology, eliminating the presence of pesticides, microbes and heavy metals. The proposed method would even further speed up the rate of production at a lowered cost, produce greater yields of the product compared to extraction procedures / in batch reactions and improve the purity of cannabinoid compounds. This was achieved in flow chemistry whereby the key intermediates (olivetol, a derivative of methyl 6-n-pentyl-2-hydroxy-4-oxo-cyclohex 2-ene-l-carboxylate and cannabigerol) were produced at high conversions (67%, 100% and 34% respectively) in LTF glass microreactors. Cannabigerol was successfully synthesized in flow at high yields compared to literature, however, it was further discovered that the formation of side products was a hindrance to further improvement of the obtained yield in flow. , Thesis (MSc) -- Faculty of Science, School of Biomecular and Chemical Sciences, 2022
- Full Text:
- Date Issued: 2022-04
Creating digital materials for Antimicrobial Resistance One Health awareness and behaviour change for Rhodes University peer educators
- Authors: Patnala, Shraddha
- Date: 2021-10-29
- Subjects: Anti-infective agents South Africa , Drug resistance , Antibiotics , Drug resistance in microorganisms , Health education South Africa , Health risk communication South Africa , Digital media South Africa , Peer counseling South Africa , One Health (Initiative) , Social Behaviour Change Communication (SBCC) , Rhodes University
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/191001 , vital:45048
- Description: Antimicrobial resistance (AMR) is an urgent, global health problem that stems from the inappropriate use of and poor adherence to antibiotics that treat diseases in human beings. It is further exacerbated by the proliferation of antibiotics into the food chain, particularly from the overuse and misuse of antibiotics in agricultural, meat, and dairy production. The recently developed World Health Organisation (WHO) One Health (OH) approach encompasses and acknowledges the various interconnected pathways that drive AMR between the human, animal, and environmental spheres. Until recently, AMR health challenges have been viewed primarily through a biomedical lens, but this study draws on the more holistic perspective that the One Health approach offers. AMR from food sources (AMR-OH) is an underrepresented topic of research. Creating digital health communication for low-literate end-users on this topic using the One Health approach is an emerging field of research. AMR-OH has not been extensively covered in health communication campaigns and requires developing context-specific digital educational materials, such as the ones this study presents. This study draws on Social Behaviour Change Communication (SBCC) theory elements to create a suggested approach to disseminate AMR-OH information. This intervention was aimed at low-health-literate end-users to accomplish two objectives. First, create awareness and improve knowledge about AMR-OH via a video. Second, offer feasible, easily implementable behaviour change actions in the form of an infographic comprising four food safety steps (Clean, Separate, Cook, and Chill). The study was conducted in three phases. First, recruit participants and conduct a literature review to identify the effective SBCC elements of health communication intervention design. Second, conduct a needs assessment to gauge the volunteering participants’ familiarity with digital media and their current health literacy on AMR-OH. Third, conceptualise and design the two AMR-OH digital educational materials (a video and accompanying infographic). The materials were first evaluated by the researcher using the Clear Communication Index (CCI) test, and then shared with the participants via WhatsApp to be evaluated by them, using two end-user tests: the Patient Education Material Assessment Tool (PEMAT) and the Suitability Assessment of Materials (SAM) test. These two tests assessed the materials’ readability, understandability, and actionability. A post-evaluation, semi-structured interview (SSI) was then conducted with the participants. Deductive thematic analysis was conducted on the SSI data and analysed using the five design benchmarks as themes: Ease of Use of Technology, Clarity of Content, Appropriate Format, Target Audience Resonance (Appropriate for target audience), and Clear calls to Action (Actionable). The rapid onset of COVID-19 restrictions forced the project to scale down and shift entirely online. The study could be conducted due to the active and enthusiastic virtual participation of two Rhodes University Peer Educators (PEs) whose contribution was vital to developing and evaluating the materials. The needs assessment showed that the PEs were comfortable using WhatsApp, had reliable internet connection when on campus, and used this social media platform for professional and personal communication. This assessment also showed that they had prior knowledge of AMR but only from the human health perspective. The video and infographic scored high on the Clear Communication Index, 93.3% and 94.4%, respectively. The PEs’ evaluation of the materials was also high on the PEMAT and SAM assessments: video narration (100%, 80% respectively), video (100%, 99% respectively), and infographic (86%, 90% respectively). This study produced an easy-to-use, accessible and appropriate online repository of AMR-OH information in a novel format with actionable steps. The post-evaluation SSI revealed that the materials and the channel of delivery were welcomed. The PEs expressed their confidence in receiving, using, and sharing this novel presentation of evidence and solutions-based information about AMR-OH. They further highlighted that this is the first time they have received and evaluated context-specific digital multimedia about AMR-OH and that this information equipped them to adopt the food safety behaviours – namely, the four food safety steps. This study demonstrates that the theory-informed creation of engaging digital media for AMR-OH is feasible and viable. Furthermore, it affirms that engaging digital media for AMR-OH can be created to enhance the knowledge of end-users about this health issue. The scaled-down approach created a blueprint to implement a more extensive intervention in the future, informed by this intervention’s methods and tools. Lastly, this blueprint for a particular conceptualisation of an AMR-OH digital media intervention provides effective and empowering tools with which the PEs can disseminate this information to the university's support staff. , Thesis (MA) -- Faculty of Humanities, School of Journalism and Media Studies, 2021
- Full Text:
- Date Issued: 2021-10-29
Antibiotics combination therapy option for the control of antimicrobial-resistant non-cholera causing Vibrio species recovered from environmental niches of Eastern Cape, South Africa
- Authors: Ayodele, Oluwakemi Victoria
- Date: 2021-04
- Subjects: Drug resistance in microorganisms , Vibrio cholerae
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/20396 , vital:45661
- Description: Increased rate of antibiotic resistance (AR) poses a serious threat with a resultant notion of a possible end of the antibiotics era, making it a problem of concern to public health and a great implication on the world economy and human society. Despite many approaches developed to curb this menace, antibiotics resistance is still a challenge worldwide. This has made the use of combined therapy as one of the options in many cases. This study was conducted to assess antibiotics combination therapy as an option for the control of antimicrobial-resistant non-cholera causing Vibrio species that were recovered from the environment in the Eastern Cape, South Africa. Two hundred and twenty-eight Vibrio species were recovered from the environment in the Province, and these were deposited in the archive of AEMREG. PCR was used to identify target Vibrio species. Disc diffusion method was used to evaluate the antibiotic susceptibility profile of the confirmed isolates against 11 antibiotics commonly used against infections. MIC and MBC were determined using antibiotics (imipenem, tetracycline, and nalidixic acid) that high resistance was discovered. Checkerboard assay was used to carry out antibiotics combination assay, and the FICI was calculated. Rate of kill was also determined using ½ × MIC, 1 × MIC, and 2 × MIC concentrations of the combined antibiotics at 2 hr intervals. One hundred of the isolates were confirmed to be Vibrio parahaemolyticus, 82 were Vibrio vulnificus and 46 were Vibrio fluvialis. Twenty-two (22) percent of the Vibrio parahaemolyticus isolates showed resistance against tetracycline and their resistance against other antimicrobials is as follows; nalidixic acid (16 percent), ampicillin (14 percent), cefotaxime (14 percent), chloramphenicol (12 percent) and amikacin (11 percent). For Vibrio vulnificus, prevalence of resistance was as follows: imipenem (40 percent), tetracycline (22 percent), ampicillin (18 percent), meropenem (15 percent), and chloramphenicol (11 percent). Vibrio fluvialis showed the following resistance profile: nalidixic acid (28 percent), tetracycline (28percent), ampicillin (20 percent), chloramphenicol (15 percent), amikacin (11 percent) and cefotaxime (11 percent). About 38 multiple antibiotic resistance phenotypes (MARP) were recorded in all species that were evaluated. About 23 percent were resistant to over 3 antibiotics used. The multiple antibiotic resistant indices (MARI) ranged between 0.3 and 0.8. MIC and MBC were carried against isolates that were resistant to the two most common antibiotics tested. MIC and MBC were determined in the following order: tetracycline and nalidixic acid at concentrations ranging from 16 μg/ml to 1024 μg/ml for Vibrio parahaemolyticus and 32 μg/ml to 2048 μg/ml for Vibrio fluvialis. Also, the MIC and MBC of imipenem and tetracycline at concentrations ranging from 8 μg/ml to 256 μg/ml for Vibrio vulnificus were determined. Antibiotics combination therapy was carried out and synergistic activity was observed in 3 of the 16 resistant V. parahaemolyticus isolates, 3 of the16 resistant V. vulnificus isolates and 2 of the 13 resistant V. fluvialis isolates. Antagonism was not observed across all the drug combinations. Rate of kill was also determined and at 6 hr exposure time, the highest concentration (2 × MIC) exhibited bactericidal effect across all three Vibrio species. The result derived in this research, therefore, propose that combination therapy is a promising solution to antimicrobial resistance in Vibrio species. , Thesis (MSc) -- Faculty of Science and Agriculture, 2021
- Full Text:
- Date Issued: 2021-04
Analysis of bacterial Mur amide ligase enzymes for the identification of inhibitory compounds by in silico methods
- Authors: Chamboko, Chiratidzo Respina
- Date: 2020
- Subjects: Pathogenic microorganisms -- Analysis , Drug resistance in microorganisms , Microorganisms -- Effect of drugs on , Antibiotics -- Effectiveness , Pathogenic bacteria , Drug tolerance , Enzymes -- Analysis , Peptide antibiotics
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/161911 , vital:40690
- Description: An increased emergence of resistant pathogenic bacterial strains over the years has resulted in many people dying of untreatable infections. This has become one of the most critical global public health problems, as resistant strains are complicating treatment of infectious diseases, increasing human morbidity, mortality, and health care costs. A very limited amount of effective antibiotics is currently available, but the development of novel classes of antibacterial agents is becoming a priority. Mur amide ligases are enzymes that have been identified as potentially good targets for antibiotics, as they are uniquely found in bacteria. They are responsible for the formation of peptide bonds in a growing peptidoglycan structure for bacterial cell walls. The current work presented here focused on characterizing these Mur amide ligase enzymes and obtaining inhibitory compounds that could potentially be of use in drug discovery of antibacterial agents. To do this, multiple sequence alignment, motif analysis and phylogenetic tree constructions were carried out, followed by docking studies and molecular dynamic simulations. Prior to docking, homology modelling of missing residues in the MurF structure (PDB 1GG4) was performed. Characterization results revealed the Mur amide ligase enzymes contained defined conservation in limited regions, that ultimately mapped towards the central domain responsible for ATP binding (presence of a conserved GKT motif). Further analysis of results further unraveled the unique patterns observed within each group of the family of enzymes. As a result of these findings, docking studies were carried out on each Mur amide ligase structure. At most, two ligands were identified to be sufficiently inhibiting each Mur amide ligase. The ligands obtained were SANC00574 and SANC00575 for MurC, SANC00290 and SANC00438 for MurD, SANC00290 and SANC00525 for MurE and SANC00290 and SANC00434 for MurF. The two best ligands identified for each enzyme had docked in the active site of their respective proteins, passed Lipinski’s rule of five and had substantially low binding energies. Molecular dynamic simulations were then performed to analyze the behavior of the proteins and protein-ligand complexes, to confirm the lead compounds as good inhibitors of the Mur amide ligases. In the case of MurC, MurD and MurE complexes, the identified ligands clearly impacted the behavior of the protein, as the ligand bound proteins became more compact and stable, while flexibility decreased. There was however an opposite effect on MurF complexes, that resulted in identified inhibitors being discarded. As a potential next step, in vivo and in vitro experiments can be performed with identified ligands from this research, to further support the information presented.
- Full Text:
- Date Issued: 2020
In vitro susceptibility of Staphylococcus aureus to porphyrin-silver mediated photodynamic antimicrobial chemotherapy
- Authors: Shabangu, Samuel Malewa
- Date: 2020
- Subjects: Porphyrins , Nanoparticles , Photochemotherapy , Drug resistance in microorganisms , Staphylococcus aureus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167476 , vital:41484
- Description: This work reports on the syntheses and characterization of symmetrical and unsymmetrical porphyrin complexes namely, 5,10,15,20-tetra(4-pyridyl)-porphyrinato zinc(II) (1), 5,10,15,20-tetrathienyl porphyrinato zinc(II) (2), 5-(4-hydroxyphenyl)-10, 15, 20-tris(2-thienyl) porphyrinato zinc(II) (3), 5-(4-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)- porphyrinato zinc(II) (4), 5-(4-carboxyphenyl)-10,15,20-triphenyl-porphyrinato zinc(II) (5) and 5-(4-carboxyphenyl)-10, 15, 20-tris(2-thienyl)-porphyrinato zinc(II) (6). The synthesis of silver nanoparticles (AgNPs) was also undertaken in this research work. Complexes 1, 2, 3 and 6 were linked to oleic acid/oleylamine functionalized nanoparticles via self-assembly and 4-6 were linked via covalent interaction through an amide bond to glutathione capped AgNPs. The effect of nature of bond along with symmetry were investigated, of interest were the five membered thienyl substituents. The photophysical and photochemical behaviour of the complexes and their conjugates with AgNPs were investigated in dimethylformamide. The porphyrin and AgNPs conjugates afforded an increase in singlet oxygen quantum yield. Complexes 1-6 and their conjugates were used for photodynamic antimicrobial chemotherapy of Staphylococcus aureus. The antimicrobial studies were done in two different concentrations of 0.36 and 2.0 μg/mL. The thienyl substituted porphyrin complexes and their conjugates gave better photodynamic activity as compared to phenyl analogues
- Full Text:
- Date Issued: 2020
Understanding of the underlying resistance mechanism of the Kat-G protein against isoniazid in Mycobacterium tuberculosis using bioinformatics approaches
- Authors: Barozi, Victor
- Date: 2020
- Subjects: Mycobacterium tuberculosis , Isoniazid , Drug resistance in microorganisms , Proteins -- Microbiology
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/146592 , vital:38540
- Description: Tuberculosis (TB) is a multi-organ infection caused by rod-shaped acid-fast Mycobacterium tuberculosis. The World Health Organization (WHO) ranks TB among the top 10 fatal infections and the leading the cause of death from a single infection. In 2017, TB was responsible for an estimated 1.3 million deaths among both the HIV negative and positive populations worldwide (WHO, 2018). Approximately 23% (roughly 1.7 billion) of the world’s population is estimated to have latent TB with a high risk of reverting to active TB infection. In 2017, an estimated 558,000 people developed drug resistant TB worldwide with 82% of the cases being multi-drug resistant TB (WHO, 2018). South Africa is ranked among the 30 high TB burdened countries with a TB incidence of 322,000 cases in 2017 accounting for 3% of the world’s TB cases. TB is curable and is clinically managed through a combination of intensive and continuation phases of first-line drugs (isoniazid, rifampicin, ethambutol, and pyrazinamide). Second-line drugs which include fluoroquinolones, injectable aminoglycoside and injectable polypeptides are used in cases of first line drug resistance. The third-line drugs include amoxicillin, clofazimine, linezolid and imipenem. These have variable but unproven efficacy to TB and are the last resort in cases of total drug resistance (Jilani et al., 2019). TB drug resistance to first-line drugs especially isoniazid in M. tuberculosis has been attributed to single nucleotide polymorphisms (SNPs) in the catalase peroxidase enzyme (katG), a protein important in the activation of the pro-drug isoniazid. The SNPs especially at position 315 of the katG enzyme are believed to reduce the sensitivity of the M. tuberculosis to isoniazid while still maintaining the enzyme’s catalytic activity - a mechanism not completely understood. KatG protein is important for protecting the bacteria from hydro peroxides and hydroxyl radicals present in an aerobic environment. This study focused on understanding the mechanism of isoniazid drug resistance in M. tuberculosis as a result of high confidence mutations in the katG through modelling the enzyme with its respective variants, performing MD simulations to explore the protein behaviour, calculating the dynamic residue network analysis (DRN) of the variants in respect to the wild type katG and finally performing alanine scanning. From the MD simulations, it was observed that the high confidence mutations i.e. S140R, S140N, G279D, G285D, S315T, S315I, S315R, S315N, G316D, S457I and G593D were not only reducing the backbone flexibility of the protein but also reducing the protein’s conformational variation and space. All the variant protein structures were observed to be more compact compared to the wild type. Residue fluctuation results indicated reduced residue flexibility across all variants in the loop region (position 26-110) responsible for katG dimerization. In addition, mutation S315T is believed to reduce the size of the active site access channel in the protein. From the DRN data, residues in the interface region between the N and C-terminal domains were observed to gain importance in the variants irrespective of the mutation location indicating an allosteric effect of the mutations on the interface region. Alanine scanning results established that residue Leucine at position 48 was not only important in the protein communication but also a destabilizing residue across all the variants. The study not only demonstrated change in the protein behaviour but also showed allosteric effect of the mutations in the katG protein.
- Full Text:
- Date Issued: 2020
Identification of possible natural compounds as potential inhibitors against Plasmodium M1 alanyl aminopeptidase
- Authors: Soliman, Omar Samir Abdel Ghaffar
- Date: 2019
- Subjects: Plasmodium , Malaria -- Chemotherapy , Plasmodium -- Inhibitors , Drug resistance in microorganisms , Aminopeptidases
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/72284 , vital:30026
- Description: Malaria is a major tropical health problem with a 29% mortality rate among people of all ages; it also affects 35% of the children. Despite the decrease in mortality rate in recent years, malaria still results in around 2000 deaths per day. Malaria is caused by Plasmodium parasites and is transmitted to humans via the bites from infected female Anopheles mosquitoes during blood meals. There are five different Plasmodium species that can cause human malaria, which include Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. Among these five species, the most pathogenic ones are Plasmodium falciparum and Plasmodium vivax. Malaria is usually hard to diagnose because the symptoms are not exclusive to malaria and very similar to flu, e.g., fever, muscle pain, and chills, which lead to the misdiagnosis of malaria cases. Malaria is lethal if not treated because it can cause severe complications in the respiratory tract, liver, metabolic acidosis, and hypoglycemia. The malaria parasite life cycle includes two types of hosts, i.e., a human host and female Anopheles mosquito host. Malaria continuously develops resistance to the available drugs, which is one of the major challenges in disease control. This situation confirms the need to develop new drugs that target virulence factors of malaria. The malarial parasite has three main life cycle stages, which include the host liver stage, host blood stage and vector stage. In the blood stage, parasites degrade hemoglobin to amino acids, which is important as these parasites cannot produce their own amino acids. Different proteases are involved in this hemoglobin degradation process. M1 alanyl aminopeptidase is one of these proteases involved at the end of hemoglobin degradation. This study focused on M1 alanyl aminopeptidase as a potential drug target. M1 alanyl aminopeptidase consists of four domains: N-terminal domain, catalytic domain, middle domain and C-terminal domain. The catalytic domain remains conserved among different Plasmodium species. Inhibition of this enzyme might prevent Plasmodium growth as it can’t produce its own amino acids. In this study, sequence analysis was carried out in both human and Plasmodium M1 alanyl aminopeptidase to identify conserved and divergent regions between them. 3D protein models of the M1 alanyl aminopeptidase from Plasmodium species were built and validated. Then the generated models were used for virtual screening against 623 compounds retrieved from the South African Natural Compounds Database (SANCDB, https://sancdb.rubi.ru.ac.za/). Virtual screening was done using blind and targeted docking methods. Docking was used to identify compounds with selective high binding affinity to the active site of the parasite protein. In this study, one SANCDB compound was selected for each protein: SANC00531 was selected against P. falciparum M1 alanyl aminopeptidase, SANC00469 against P. knowlesi, SANC00660 against P. vivax, SANC00144 against P. ovale and SANC00109 against P. malariae. It was found that Plamsodium M1 alanyl aminopeptidase can be used as a potential drug target as it showed selective binding against different inhibitor compounds. This result will be investigated in future work though molecular dynamic analysis to investigate the stability of protein-ligand complexes.
- Full Text:
- Date Issued: 2019
Synthesis, characterisation and evaluation of novel ferrocene-thiazole derivatives as antiplasmodial agents
- Authors: Hakizimana, Emmanuel Victor
- Date: 2017
- Subjects: Plasmodium , Malaria -- Chemotherapy , Plasmodium falciparum , Plasmodium -- Inhibitors , Drug resistance in microorganisms , Thiaszoles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/5304 , vital:20807
- Description: Malaria is mosquito-transmitted disease which continues to pose threat to humanity, despite the efforts undertaken by the scientific community, government entities and international organizations. The major problem is that Plasmodium species have developed resistance against available drugs. In order to counter this problem, antimalarial drugs that are efficacious and with novel mode of action are of great necessity. Thiazole derivatives, in particular aminomethylthiazole analogues, have been shown to exhibit promising antimalarial activity against Plasmodium falciparum strains. Previous studies reported the hit compound MMV010539, which showed good antimalarial activity against both K1 (CQ and multidrug resistant strains) and NF54 (CQ sensitive strain). In this study, MMV010539 was deemed to be as an attractive compound to generate novel analogues by addition of ferrocenyl organometallic unit. The ferrocene based compounds have shown biological activity; and with ferroquine currently in clinical trials there has been increasing research into identifying new ferrocenyl-containing molecules as potential antimalarial agents. Herein, thiazole ferrocene based molecules 3.22a-e were synthesised in low to good yields. Their structural identities were confirmed using conventional spectroscopic techniques (¹H and ¹³C NMR, FT-IR spectroscopy and mass spectrometry). The cell cytotoxicity assay of all final compounds confirmed that all ferrocene-thiazole blends 3.22a-e were non-toxic against HeLa cell lines. However, the in vitro biological assay revealed that despite the absence of cell cytotoxicity these compounds poorly inhibited the growth of Plasmodium falciparum parasite. As the aim was to expand further the structure-activity relationship (SAR) of MMV010539, this study confirmed the previous findings that there is a limited structural modification that could be accommodated as indicated in Figure 3.3 (Panel C). Moreover, the combination of ferrocenyl moiety and various alkylamines resulted in compounds with poor antiplasmodial potency, further suggesting that the free amine (Panel A, Figure 3.3) is important for activity.
- Full Text:
- Date Issued: 2017
Synthesis, characterisation and evaluation of novel ferrocene-thiazole derivatives as antiplasmodial agents
- Authors: Hakizimana, Emmanuel Victor
- Date: 2017
- Subjects: Plasmodium , Malaria -- Chemotherapy , Plasmodium falciparum , Plasmodium -- Inhibitors , Drug resistance in microorganisms , Thiaszoles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/96068 , vital:31232
- Description: Malaria is mosquito-transmitted disease which continues to pose threat to humanity, despite the efforts undertaken by the scientific community, government entities and international organizations. The major problem is that Plasmodium species have developed resistance against available drugs. In order to counter this problem, antimalarial drugs that are efficacious and with novel mode of action are of great necessity. Thiazole derivatives, in particular aminomethylthiazole analogues, have been shown to exhibit promising antimalarial activity against Plasmodium falciparum strains. Previous studies reported the hit compound MMV010539, which showed good antimalarial activity against both K1 (CQ and multidrug resistant strains) and NF54 (CQ sensitive strain). In this study, MMV010539 was deemed to be as an attractive compound to generate novel analogues by addition of ferrocenyl organometallic unit. The ferrocene based compounds have shown biological activity; and with ferroquine currently in clinical trials there has been increasing research into identifying new ferrocenyl-containing molecules as potential antimalarial agents. Herein, thiazole ferrocene based molecules 3.22a-e were synthesised in low to good yields. Their structural identities were confirmed using conventional spectroscopic techniques (¹H and ¹³C NMR, FT-IR spectroscopy and mass spectrometry). The cell cytotoxicity assay of all final compounds confirmed that all ferrocene-thiazole blends 3.22a-e were non-toxic against HeLa cell lines. However, the in vitro biological assay revealed that despite the absence of cell cytotoxicity these compounds poorly inhibited the growth of Plasmodium falciparum parasite. As the aim was to expand further the structure-activity relationship (SAR) of MMV010539, this study confirmed the previous findings that there is a limited structural modification that could be accommodated as indicated in Figure 3.3 (Panel C). Moreover, the combination of ferrocenyl moiety and various alkylamines resulted in compounds with poor antiplasmodial potency, further suggesting that the free amine (Panel A, Figure 3.3) is important for activity.
- Full Text:
- Date Issued: 2017
Antimicrobial activities of three medicinal plants against selected diarrheagenic pathogens
- Authors: Nkosi, Themba Johan
- Date: 2013
- Subjects: Anti-infective agents , Drug resistance in microorganisms , Materia medica, Vegetable
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:10126 , http://hdl.handle.net/10948/d1020759
- Description: Diarrhea is a global concern that the United Nations Children’s Fund (UNICEF) and the World Health Organization (WHO), have confirmed to be the second major cause of death in children under the age of five. Major bacterial pathogens that cause diarrhea include Escherichia coli, Salmonella species, Shigella species and Staphylococcus aureus. Antibiotic therapy is recommended depending on the severity and presentation of the disease; however, the appearance of antibiotic-resistant bacteria is an emerging global threat to the ability to treat these bacterial infections. This situation could be overcome by the discovery of new natural antibiotics. Plants have been a source of medicine for centuries and have been used to treat diseases including diarrhea. This makes plants a natural potential target to study for their antibiotic properties. The objective of this study was to determine the antibiotic properties of medicinal plants against known pathogens that cause bacterial diarrhea. Three medicinal plants, Cassia abbreviata, Kigelia africana, and Geranium incanum were investigated for their antimicrobial properties against these strains of microorganisms: American Type Culture Collection (ATTC) and Clinical Strains (CS). The plant materials were ground into powder, which was then dissolved in methanol, acetone and distilled water to extract the active compounds. The plant extracts were then used to (i) determine their antibiotic activity, (ii) determine the minimum inhibitory concentration (MICs), (iii) analyze the thin layer chromatography (TLC) fingerprints, and (iv) analyze the autobiography assay. The results obtained in this study met the aim and objectives of this study. The antimicrobial activities of the selected plants were obtained as discussed in Chapter 2 and 3. These results indicated that the traditional plants could be used as antimicrobials. In the screening assays, the test microorganisms were inhibited by the plant extracts, when they were subjected to plant extracts. This was performed on Mueller Hinton agar as sensitivity testing, which revealed clear zones of inhibition. The MIC values for each plant extract were established which ranged from 0.101 to 13.3 mg/dl. The TLC analysis revealed the spots which contained the active compounds which inhibited the bacterial growth. A bioautography assay was performed on the TLC plates, which exposed the exact spots containing the active compound inhibiting the bacteria. These results are clearly consistent with what former scientists have observed. Detailed explanations on the results are in Chapter 3 and 4 of this paper. It is important to note that all the procedures performed in this study were in vitro assays. Some effective in vitro assay activity may not always result in the same effective in vivo activity, because some active compounds may be metabolized and degraded into inactive metabolites. For this reason, the in vitro results obtained in this study, may not reflect the true effectiveness of the compounds in in vivo trials. It is therefore advised that future scientists should take a step further in analyzing the plant extracts through in vivo assays. Further testing and study on these plants at an advanced molecular level will be beneficial in the medical fields in the search for new antibiotics to treat infectious diseases. Purification and further analysis of their products can be helpful in the production of pure natural medicines. This will discover the active ingredients and compounds responsible for inhibition of the microorganisms. This will make the compounds potential candidates for a scientific validation and analysis for future scientists to bring a new dawn in the fight against infectious diseases.
- Full Text:
- Date Issued: 2013
Sequence and structural investigation of the nonribosomal peptide synthetases of Bacillus atrophaeus UCMB 5137(63Z)
- Authors: Ryan, Candice Nancy
- Date: 2013 , 2013-04-19
- Subjects: Bacillus (Bacteria) , Peptides--Synthesis , Antibiotics , Drug resistance in microorganisms , Amino acids , Phytopathogenic microorganisms , Trees--Phylogeny , Ligases
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3891 , http://hdl.handle.net/10962/d1003057 , Bacillus (Bacteria) , Peptides--Synthesis , Antibiotics , Drug resistance in microorganisms , Amino acids , Phytopathogenic microorganisms , Trees--Phylogeny , Ligases
- Description: Due to increased plant resistance to the existing antibiotics produced, there is a need to develop alternatives. Nonribosomal peptides (NRPs) are important plant phytopathogens synthesized by nonribosomal peptide synthetases (NRPSs). In this study, a newly sequenced Bacillus strain Bacillus atrophaeus UCMB 5137 (63Z), found to have increased phytopathogenic activity, was investigated to gain insights to the possible reason behind this activity. NRPS modules were identified using a novel script that can act on unannotated, raw DNA sequences. The Structure Based Sequence Analysis Webserver was used to identify the amino acids incorporated into the final NRP, which were compared to the NRP database. Five NRPSs were found within the strain; fengycin/plipstatin, mycosubtilin, surfactin, bacillibactin and bacitracin. Some of the modules usually present for these NRPSs were not present in the test strain and only a few modules were found. A phylogenetic study was carried out and the topologies of the trees showed that genes were not transferred horizontally. It did, however, lead to the hypothesis that different NRPS genes are under different adaptive evolutionary pressures. Only slight conformational changes between L and D-conformation of amino acids were seen between the test and neighboring strains. All of the linker and terminal regions of synthetases were found to exhibit a large amount of conservation overall. Homology modeling was performed on the test strain on selected modules, TE and A-domains of fengycin and mycosubtilin synthetases. TE-domains between the different synthetases are different and specific for the NRP they facilitate release for. The NRPS from which the A-domain originates also influences substrate specificity as well as the module in which the A-domain occurs within the NRPS. Binding pockets of A-domains of differing substrate specificity were compared. Future work will include; refinement of the models and docking studies within the A-domain binding pocket. , Microsoft� Word 2010 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2013
Antibacterial and phytochemical studies of selected South African honeys on clinical isolates of Helicobacter pylori
- Authors: Manyi-Loh, Christy E
- Date: 2012
- Subjects: Helicobacter pylori , Honey--South Africa , Drug resistance in microorganisms , Bacterial diseases , Honey -- Therapeutic use , Helicobacter pylori infections , Traditional medicine -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11240 , http://hdl.handle.net/10353/d1001056 , Helicobacter pylori , Honey--South Africa , Drug resistance in microorganisms , Bacterial diseases , Honey -- Therapeutic use , Helicobacter pylori infections , Traditional medicine -- South Africa -- Eastern Cape
- Description: Infection with Helicobacter pylori has been associated with the pathogenesis of numerous stomach and gastroduodenal diseases that pose threats to public health. Eradicaftion of this pathogen is a global challenge due to its alarming rate of multidrug resistance. Consequently, to find an alternative treatment, the search is increasingly focused on new antimicrobial product from natural sources including honey. Honey has been used as medicine in several cultures since ancient time due to its enormous biomedical activities. Its beneficial qualities have been endorsed to its antimicrobial, antioxidant, anti-inflammatory properties added to its phytocomponents. In this study, the anti-H. pylori activity of South African honeys and their solvent extracts as well as the phytochemicals present in the two most active honeys were evaluated. Agar well diffusion test was used to investigate the antimicrobial activity of six honey varieties obtained from different locations in the country. Subsequently, the honeys were extracted with four organic solvents viz n-hexane, diethyl ether, chloroform and ethyl acetate employed in order of increasing polarity. The antibacterial activity of the different solvent extracts of each honey was evaluated by agar well diffusion; broth micro dilution and time kill assays. Different chromatographic techniques (Thin layer & column chromatography) were employed to enumerate the phytochemical constituents in the most active solvent extracts of Pure Honey (PH) and Champagne Royal Train (CRT); and were identified by gas-chromatography linked mass-spectrometry. Linalool pure compound was equally evaluated for anti-H. pylori activity in a bid to trace the antibacterial agent among the variety of compounds identified. Data were analyzed by One-way ANOVA test at 95% confidence interval. Crude honeys and their solvent extracts demonstrated potent anti-H. pylori activity with zone diameter that ranged from [16.0mm (crude) to 22.2mm (extract)] and percentage susceptibilities of test isolates between 73.3% (crude) and 93.3% (extract). The chloroform extracts of PH and CRT were most active with MIC50 in the ranges 0.01- viii 10%v/v and 0.625-10%v/v respectively, not significantly different from amoxicillin (P> 0.05); and efficient bactericidal activity (100% bacterial cells killed) at 1/2MIC and 4xMIC over different time intervals, 36-72hrs and 18-72hrs respectively. The appearance of bands on the thin layer chromatography (TLC) chromatogram spotted with the chloroform extracts of PH and CRT; and developed with hexane: ethyl acetate: acetic acid (HEA) and methanol: acetic acid: water (MAAW) solvent systems indicated the presence of compounds. Purification of the compounds contained in these extracts over silica gel column yielded numerous fractions which were evaluated for antibacterial activity and purity. PHF5 was the most active fraction with a mean MIC50 value of 1.25mg/mL. Volatile compounds belonging to different known chemical families in honey were identified in all the active fractions obtained from PH. Conversely, only four compounds were identified in the active fractions obtained from CRT hence the non volatile constituents could be of prime relevance with respect to antibacterial activity of this honey. Of novelty was the presence of thiophene and N-methyl-D3-azirdine compounds, essential precursors used for the synthesis of natural products and pharmaceuticals with vital biomedical properties. Linalool demonstrated potent inhibitory (MIC95, 0.002- 0.0313mg/mL) and bactericidal activity (0.0039-0.313mg/mL) against the test isolates. On the other hand, a significant difference was recorded (P < 0.05) in comparing the activity of linalool compound to the fractions. PH could serve as a good economic source of bioactive compounds which could be employed as template for the synthesis of novel anti-H. pylori drugs. However, further studies are needed to determine the non volatile active ingredients in PH and CRT as well as toxicological testing
- Full Text:
- Date Issued: 2012
Commensal bacteria belonging to the Staphylococcus Acinetobacter and Stenotrophomonas genera as reservoirs of antibiotic resistance determinants in the environment of Nkonkobe Municipality, Eastern Cape Province , South Africa
- Authors: Adegoke, Anthony Ayodeji
- Date: 2012
- Subjects: Acinetobacter infections , Drug resistance in microorganisms , Staphylococcal infections , Bacterial diseases
- Language: English
- Type: Thesis , Doctoral , Degree
- Identifier: http://hdl.handle.net/10353/6539 , vital:30551
- Description: A study to assess the potentials of some commensal bacteria that belong to Staphylococcus, Acinetobacter and Stenotrophomonas genera as reservoirs of antibiotic resistance determinants in the environment of Nkonkobe Municipality of the Eastern Cape Province, South Africa, was carried out using standard microbiological and molecular techniques. A total of 120 Staphylococcus isolates which consisted of Staphylococcus haemolyticus (30%), Staphylococcus aureus (23.3%) from pig; Staphylococcus capitis (15%) from goat; Staphylococcus heamolyticus (5%) and Staphylococcus xylosus (15%) from cattle and other Staphylococci (11%) from dead chicken and pigs were isolated. About 23.3% of these isolates were coagulase positive and 76.7% were coagulase negative. This difference in prevalence along coagulase production divide was statistically significant (p < 0.05). Eighty-six Acinetobacter species (Acinetobacter baumannii/calcoaceticus and Acinetobacter haemolyticus) were also isolated from Alice and Fort Beaufort towns samples, while 125 Stenotrophomonas maltophilia isolates were from grass root rhizosphere (96%) and soil butternut root rhizosphere (4%). Between 75-100% of the Staphylococccus species were resistant to Penicillin G, tetracycline, sulphamethaxole and nalidixic acid; about 38 % were methicillin resistant, consisting of 12.6% methicillin resistant Staphylococcus aureus (MRSA) from pig and a total of 12% vancomycin resistant were observed. Also, 12% of the isolates were erythromycin resistant while 40.2 % were resistant to the third generation cephalosporin, ceftazidime. The antibiotic resistance genes vanA, VanB, eryA, eryB, eryC were not detected in all the phenotypically resistant Staphylococccus species, but mec A gene and mph genes were detected. In the Acinetobacter species, a wide range of 30-100% resistance to penicillin G, ceftriazone, nitrofurantoin, erythromycin, and augmentin was observed. Polymerase chain reaction (PCR) revealed the presence of Tet(B) and Tet(39) genes in these species, while Tet (A), Tet(M) and Tet(H) were absent. Also, 9.3% of the Acinetobacter species showed phenotypic production of extended spectrum beta lactamases (ESBLs) while 3.5% were positive for the presence of blaCTX-M-1 genes. The Stenotrophomonas maltophilia isolates showed varying resistance to meropenem (8.9%), cefuroxime (95.6 %), ampicillin-sulbactam (53.9%), ceftazidime (10.7%), cefepime (29.3 %), minocycline (2.2%), kanamycin (56.9%), ofloxacin (2.9%), levofloxacin (1.3%), moxifloxacin (2.8%), ciprofloxacin (24.3%), gatifloxacin (1.3%), polymyxin B (2.9 %), cotrimoxazole (26.1%), trimethoprim (98.6%), aztreonam(58%) and Polymyxin B (2.9 %). The isolates exhibited significant susceptibility to the fluoroquinolones (74.3-94.7 %), polymycin (97.1%) and meropenem (88.1%). Only sul3 genes were the only sulphonamide resistance gene detected among the trimethoprim-sulphamethoxazole resistant isolates. The observed multiple antibiotic resistance indeces (MARI) of >2 for Staphylococcus species, Acinetobacter species and Stenotrophomonas maltophilia suggest that they have arisen from high-risk sources where antibiotics are in constant arbitrary use resulting in high selective pressure. The presence of tetracycline resistance genes in Acinetobacter species justifies the observed phenotypic resistance to oxytetracycline and intermediate resistance to minocycline. High phenotypic resistance and the presence of some resistance genes in Staphylococcus species is a possible threat to public health and suggests animals to be important reservoirs of antibiotic resistance determinants in the environment. Indiscriminate use of antibiotics induces this kind of antibiotic resistance and should be discouraged. Personal hygiene is encouraged as it reduces the load of Acinetobacter species contacted from the environment that may be difficult to control. Commensal Stenotrophomonas maltophilia are as important as their clinical counterparts due to their roles in opportunistic infection, antibiotic resistance and their associated genes, especially sul gene. Personal hygiene is hereby advocated especially when in contact with soil, plants and plants’ rhizospheric soil.
- Full Text:
- Date Issued: 2012
Comparative in-vitro activities of trimethoprimsulfamethoxazole and the new fluoroquinolones against confirmed extended spectrum beta-lactamase producing Stenotrophomonas maltophilia in Nkonkobe Municipality, Eastern Cape environment
- Authors: Adeyemi, Oluwatosin Oluwakemi
- Date: 2012
- Subjects: Antibiotics , Microbial sensitivity tests , Drug resistance in microorganisms , Pathogenic microorganisms , Gram-negative bacterial infections
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11275 , http://hdl.handle.net/10353/d1007576 , Antibiotics , Microbial sensitivity tests , Drug resistance in microorganisms , Pathogenic microorganisms , Gram-negative bacterial infections
- Description: Stenotrophomonas maltophilia is increasingly emerging as an opportunistic pathogen of global concern. Due to its inherent resistance to several classes of antibiotics including carbapenems and its ability to acquire mobile resistance elements, treatment of infections caused by S. maltophilia is a constant challenge for clinicians. Trimethoprim-sulphamethoxazole (TMP-SMX) is the generally accepted antibiotic of choice for the treatment of infections caused by this organism, but resistance to the drug is increasingly being reported; hence, the need for alternative therapeutic options. In this study, the antimicrobial susceptibility profile of 110 commensal S. maltophilia isolates obtained from Nkonkobe municipality, Eastern Cape Province, Republic of South Africa was investigated. Twenty-one antibiotics including TMP-SMX and the newer fluoroquinolones; levofloxacin, gatifloxacin and moxifloxacin were included in the antibiotic panel. About 63.4 percent of the isolates were susceptible to TMP-SMX with a resistance rate of 28.2 percent. The fluoroquinolones were more effective with susceptibilities ranging from 76 percent to 94.7 percent. Resistance to the fluoroquinolones ranged from 1.3 percent to 2.7 percent. Levofloxacin was the most effective fluoroquinolone tested. Phenotypic dectection of extended spectrum β-lactamases (ESBLs) showed double disc synergy test (DDST) positivity in 59.5 percent of the isolates. Cefepime was the most sensitive indicator cephalosporin in the DDST with 77.3 percent of suspected ESBL-producing isolates showing cefepime-clavulanic acid synergy. Isolates exhibited nine different ESBL phenotypes, however, PCR amplification of the bla genes revealed four isolates that possessed genes belonging to the CTX-M group (CTX-M-1 and CTX-M-8 groups). ESBL genes are usually carried on mobile elements such as plasmids and transposons which may also bear genes that mediate resistance to aminoglycosides, tetracyclines, TMP-SMX and fluoroquinolones. ESBL positive isolates appeared more susceptible to the fluoroquinolones compared to TMP-SMX but there was no significant relationship between ESBL production and susceptibility to these drugs (p > 0.05). The newer fluoroquinolones are a possible alternative treatment option for S. maltophilia infections in this environment but further studies and clinical investigations are needed to determine the in vivo efficacy of these drugs.
- Full Text:
- Date Issued: 2012
Molecular detection and drug susceptibility of Mycobacterium tuberculosis complex in raw milk from a major dairy farm in the Nkonkobe region, Eastern Cape Province, South Africa
- Authors: Silaigwana, Blessing https://orcid.org/0000-0002-3324-1607
- Date: 2012
- Subjects: Mycobacterium tuberculosis , Drug resistance in microorganisms , Tuberculosis -- Pathogenesis
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/24239 , vital:62543
- Description: Mycobacterium tuberculosis complex (MTBC) organisms are the causative agents of tuberculosis in humans as well as animals. The study aimed to use molecular techniques for detection and drug susceptibility testing of MTBC in raw milk from cattle at a dairy farm in the Nkonkobe region of South Africa. Two hundred samples (100mL each) were collected and processed using the modified Petroff’s method. DNA was isolated using the Zymo Research bacterial DNA kit and amplified using the Seeplex® MTB Nested ACE assay. Drug susceptibility testing was performed using the Genotype® MTBDRplus assay. MTBC DNA was detected in 11 (6percent) of the samples tested. Resistance to both rifampicin and isoniazid was detected in 90.9percent of the positive samples. The most frequent rpoB mutations detected were H526Y (90percent), H526D (80percent), S531L (60percent) and D516V (20percent). No mutation was detected in the katG gene. All isoniazid resistant samples harboured mutations in the inhA gene. The most frequent (100percent) mutation conferring low level isoniazid resistance was the T8A substitution. The inhA mutations C15T, A16G and T8C were equally represented with 60percent frequency. A high prevalence of multi-drug resistance was noted in the Nkonkobe region. Therefore, the results of this study have clinico-veterinary and epidemiological significance and calls for further studies and necessary actions to delineate the situation. , Thesis (MSc) -- Faculty of Science and Agriculture, 2012
- Full Text:
- Date Issued: 2012
Phytochemical analysis and bioactivity of Garcinia Kola (Heckel) seeds on selected bacterial pathogens
- Authors: Seanego, Christinah Tshephisho
- Date: 2012
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants , Microbial sensitivity tests , Streptococcal infections , Streptococcus , Staphylococcus aureus infections , Salmonella typhimurium , Traditional medicine
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11259 , http://hdl.handle.net/10353/420 , Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants , Microbial sensitivity tests , Streptococcal infections , Streptococcus , Staphylococcus aureus infections , Salmonella typhimurium , Traditional medicine
- Description: Garcinia kola is one of the plants used in folklore remedies for the treatment of microbial infections. Bacterial resistance to commonly used antibiotics has necessitated the search for newer and alternative compounds for the treatment of drug resistant microbial infections. This study focuses on the bioactivity of G. kola seeds on Streptococcus pyogenes (ATCC 49399), Staphylococcus aureus (NCTC 6571), Plesiomonas Shigelloides (ATCC 51903) and Salmonella typhimurium (ATCC 13311), organisms which can cause illnesses from mild to severe with potentially fatal outcomes. The crude ethyl acetate, ethanol, methanol, acetone and aqueous extracts were screened by agar-well diffusion method and the activities of the extract were further determined by Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays. The inhibition zones ranged from 0 - 24 mm, while MIC and MBC of the extract ranged between 0.04 - 1.25 mg/mL and 0.081 - 2.5 mg/mL respectively. Chloroform/ Ethyl Acetate/ Formic acid (CEF) solvent system separated more active compounds followed by Ethyl Acetate/ Methanol/ Water (EMW) and Benzene/ Ethanol/ Ammonium Hydroxide (BEA). The extracts were fractionated by Thin Layer Chromatography (TLC). Bioautography was used to assess the activity of the possible classes of compounds present in the more active extracts. Column chromatography was used to purify the active compounds from the mixture while Gas Chromatography-Mass Spectrometry (GC-MS) was used to identify the phyto components of the fractions. The MIC of the fractions ranged between 0.0006 - 2.5 mg/mL. CEF 3 (F3), CEF 11 (F11) and CEF 12 (F12) revealed the presence of high levels fatty acids Linoleic acid, 1, 2-Benzenedicarboxylic acid and 2, 3-Dihydro-3, 5-dihydroxy-6-methyl, respectively. The results obtained from this study justify the use of this plant in traditional medicine and provide leads which could be further exploited for the development of new and potent antimicrobials.
- Full Text:
- Date Issued: 2012
Bioactivity and phytochemical analysis of Hydnora Africana on some selected bacterial pathogens
- Authors: Nethathe, Bono Bianca
- Date: 2011
- Subjects: Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11247 , http://hdl.handle.net/10353/d1001063 , Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Description: Abstract Medicinal plants have been for long remedies for human diseases because they contain components of therapeutic value. The growing problem of antibiotic resistance by organisms demands the search for novel compounds from plant based sources. The present study was aimed at evaluating the bioactivity and phytochemical analysis of Hydnora africana on clinical and standard strains of Helicobacter pylori (PE 252C and ATCC 43526), Aeromonas hydrophila ATCC 35654, and Staphylococcus aureus NCT 6571 in an effort to identify potential sources of cheap starting materials for the synthesis of new drugs against these strains. Ethyl acetate, acetone, ethanol, methanol, and water crude extracts of H. africana were screened for activity against the test organisms using the agar well diffusion assay. The Minimum Inhibitory Concentration (MIC50) and Minimum Bactericidal Concentration (MBC) of the most potent extracts were determined by the microdilution method, followed by qualitative phytochemical analysis. Results were analyzed statistically by ANOVA one - way test. Different concentrations (200,100, 50mg/mL) of the methanol, acetone, ethanol and ethyl acetate extracts showed activity against S. aureus and A. hydrophila while for H. pylori, only methanol and ethyl acetate extracts were active; water showed no activity for all studied bacterial pathogens. Mean zone diameter of inhibition which ranged from 0-22mm were observed for all test bacterial pathogens and 14-17mm for ciprofloxacin. The activity of methanol and ethyl acetate extracts were statistically significant (P< 0.05) compared to all the other extracts. MIC50 and MBC ranged from 0.078 – 2.5mg/mL, 0.78-25mg/mL respectively for all tested bacterial pathogens. For ciprofloxacin, the MIC50 and MBC ranged from 0.00976 – 0.078mg/mL and 0.098– 0.78mg/mL respectively. There was no statistically significant difference between extracts (methanol, acetone, ethanol, ethyl acetate) and the control antibiotic (ciprofloxacin) (P> 0.05). Qualitative phytochemical analysis confirmed the presence of alkaloids, saponins, steroids, tannins and flavonoids in the methanol, acetone,ethanol and ethyl acetate extracts. The results demonstrate that H. africana may contain compounds with therapeutic potentials which can be lead molecules for semi-synthesis of new drugs.
- Full Text:
- Date Issued: 2011
In-vitro anti-vibrio activities of crude extracts of Garcinia Kola seeds
- Authors: Penduka, Dambudzo
- Date: 2011
- Subjects: Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11256 , http://hdl.handle.net/10353/405 , Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Description: The n-Hexane, dichloromethane, methanol and aqueous crude extracts of Garcinia kola (Heckel) seeds were screened for their anti-Vibrio activities against 50 Vibrio bacteria isolated from wastewater final effluents. The 50 isolates consisted of different Vibrio species namely V. fluvialis (14), V. vulnificus (12), V. parahaemolyticus (12), V. metschnikovii (3) and 9 others unidentified to the specie level. The n-Hexane, dichloromethane and methanol extracts had activities against 16 (32 percent) of the Vibrio isolates, while the aqueous extracts had activities against 12 (24 percent) all at a screening concentration of 10 mg/ml. The minimum inhibitory concentrations (MICs) were 0.313-0.625 mg/ml, 0.313-0.625 mg/ml, 0.313-2.5 mg/ml and 10 mg/ml for n-Hexane, dichloromethane, methanol and aqueous extracts respectively. Rate of kill studies were carried out against three different Vibrio species namely V. vulnificus (AL042), V. parahaemolyticus (AL049) and V. fluvialis ( AL040) using the n-Hexane, dichloromethane and methanol extracts at 1× to 4 × MICs and 2 hour exposure. About 96.3 percent, 82.2 percent, and 78.1 percent (V. fluvialis AL040); 92.6 percent, 87.8 percent and 68.9 percent (V. parahaemolyticus AL049); and 91.6 percent, 64.4 percent, 60 percent (V. vulnificus AL042) of the bacteria were killed by the crude n-Hexane, dichloromethane and methanol extracts respectively after 2 hour exposure time at 4× MIC. The patterns of activity were bacteriostatic, with the n-Hexane extracts being most effective in activity. We conclude that the Garcinia kola seeds have promise in the treatment and management of infections caused by Vibrio species.
- Full Text:
- Date Issued: 2011