The development of an in vitro system for the production of drug metabolites using microsomal enzymes from bovine liver
- Authors: Morrison, Roxanne
- Date: 2011
- Subjects: Drugs -- Metabolism , Xenobiotics -- Metabolism , Metabolites , Drugs -- Testing , Toxicity testing -- In vitro , Doping in horse racing -- Control -- Research
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4087 , http://hdl.handle.net/10962/d1007698 , Drugs -- Metabolism , Xenobiotics -- Metabolism , Metabolites , Drugs -- Testing , Toxicity testing -- In vitro , Doping in horse racing -- Control -- Research
- Description: Drug metabolism is a specialised subset of xenobiotic metabolism, pertaining to the breakdown and elimination of pharmaceutical drugs. The enzymes involved in these pathways are the cytochrome P450 family of isozymes. Metabolism is an important factor in determining the pharmacological effects of drugs. The main aim of this study was to develop a system whereby the major metabolites of drugs can be produced in vitro. An in vitro system was developed and optimised using commercially prepared microsomes from rat liver and coumarin (by monitoring its conversion to 7-hydroxycoumarin) as a model. The optimum running conditions for the incubations were 50 μM coumarin, 50 μg protein/ml microsomes, 1 mM NADP⁺, 5 mM G6P and 1U/ml G6PDH incubated for 30 minutes at 38℃. The HPLC method for the detection of coumarin and 7-hydroxycoumarin was also validated with respect to linearity, reproducibility, precision, accuracy and lower limits of detection and quantification. The system developed was then tested using microsomes prepared from fresh bovine liver on these ten drugs of interest in doping control in horse racing: diazepam, nordiazepam, oxazepam, promazine, acepromazine, chlorpromazine, morphine, codeine, etoricoxib and lumiracoxib. The bovine liver microsomes were prepared using differential centrifugation and had activity on a par with the commercial preparations. This in vitro system metabolised the drugs and produced both phase I and II metabolites, similar to those observed in humans and horses in vivo. For example, the major metabolites of the benzodiazepine drug, diazepam, nordiazepam, temazepam and oxazepam as well as the glucuronidated phase II products were all found after incubations with the bovine liver microsomes. The metabolism of the drugs was also investigated in silico using the computational procedure, MetaSite. MetaSite was able to successfully predict known metabolites for most of the drugs studied. Differences were observed from the in vitro incubations and this is most likely due to MetaSite using only human cytochrome P450s for analysis.
- Full Text:
- Date Issued: 2011
The investigation of novel marine microorganisms for the production of biologically active metabolites
- Authors: Sunkel, Vanessa Ann
- Date: 2009 , 2013-07-15
- Subjects: Antibiotics , Drugs -- Research , Metabolites , Marine biotechnology , Marine metabolites -- Therapeutic use , Microorganisms -- Effect of drugs on , Penicillium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3812 , http://hdl.handle.net/10962/d1004579 , Antibiotics , Drugs -- Research , Metabolites , Marine biotechnology , Marine metabolites -- Therapeutic use , Microorganisms -- Effect of drugs on , Penicillium
- Description: New drugs, particularly antibiotics, are urgently required to combat the increasing problem of antibiotic resistant human pathogens. Due to the scarcity of products available today, the pharmaceutical industry is now under pressure to reassess compounds derived from plants, soil and marine organisms. Pharmaceutical companies are showing renewed interest in marine biotechnology as the oceans represent a rich source of both biological and chemical diversity of novel molecular structures with anti-cancer, anti-inflammatory and antibiotic properties. Formerly unexplored locations, such as deep ocean sediments, show great potential as a source of genetically novel microorganisms producing structurally unique secondary metabolites. In this research, a metabolite producing marine Pseudoalteromonas strain, known as AP5, was initially used to develop methods for the detection, optimisation of production and extraction of bioactive metabolites from other potentially novel marine isolates. Two hundred and seventy six (276) marine isolates from water and sediment samples from the Antarctic Ocean and Marion Island were isolated. Ten visually different isolates were screened for bioactivity against Gram-positive and -negative bacteria, fungi and yeast. Three out of the 10 isolates, WL61 , WL 114 and WL 136, appeared to be novel Streptomyces spp. showing activity against different test organisms. Many of these marine microorganisms are difficult to culture in the laboratory, particularly when they are cultivated continuously in shake flasks as they can stop producing bioactive compounds. The cultivation of marine isolates in bioreactors may be a more beneficial process for the optimisation of metabolite production compared to conventional liquid fermentation techniques whereby the solid-liquid-air interface of membrane bioreactors can imitate the natural environment of microbes. The membrane bioreactor system is a stable growth environment with low shear that supports steady-state biofilm growth consisting of a high cell density due to a high mass transfer of nutrients and oxygen to the cells. This approach was employed and isolates WL61, WL114 and WL136 were immobilised onto ceramic membranes using Quorus single fibre bioreactors (SFR). The SFRs were used to establish the most suitable growth medium for continuous secondary metabolite production. The best growth conditions were applied to the Quorus multifibre bioreactor (MFR) for scale up of biologically active metabolites, highlighting the potential of bioreactor technology for use in bioprospecting for isolating and screening novel and known organisms for new and interesting natural products. Furthermore, the Quorus MFR was shown to be suitable for the production of high yields of antimicrobial metabolites and is an efficient new fermentation production system. Purification by HPLC fractionation was used to characterise four major compounds from isolate WL 114 extracts. NMR structure elucidation identified one of the two primary compounds as Bisphenol A. The complete chemical structure for the second potent bioactive compound could not be determined due to the low concentration and volume of material. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2009
Parasite prevalence, nutritionally-related blood metabolites and pre-slaughter stress response in Nguni, Bonsmara and Angus steers raised on veld
- Authors: Ndlovu, Thulile
- Date: 2008
- Subjects: Parasites , Nguni cattle , Bonsmara cattle , Metabolites , Slaughtering and slaughter-houses , Aberdeen -- Angus cattle
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11258 , http://hdl.handle.net/10353/73 , Parasites , Nguni cattle , Bonsmara cattle , Metabolites , Slaughtering and slaughter-houses , Aberdeen -- Angus cattle
- Description: The effects of month on body weight, body condition scores, internal parasite prevalence and on nutritionally related blood metabolites were studied in Angus, Bonsmara and Nguni steers raised on sweet veld. Pre-slaughter stress was also determined using catecholamines, cortisol, dopamine, packed cell volume and serum creatinine levels. The blood chemical constituents evaluated included glucose, cholesterol, total protein, creatinine, urea, globulin, albumin, calcium, phosphorus, magnesium, aspartate amino transferase (AST), alkaline phosphatase (ALP) and creatinine kinase (CK). The Nguni steers maintained their body condition throughout the study period whereas Angus steers had the least body condition scores. Parasite levels were high during the rainy season and low during the dry season. The predominant internal parasites were Haemonchus (39.3 percent), Trichostrongylus (37.8 percent), Cooperia pectinita (25.5 percent), Fasciola gigantica (16.3 percent) and Ostertagia ostertagi (11.2 percent). The Nguni had the least parasite infestation levels and had high PCV levels. Nguni had higher levels of cholesterol and glucose (2.86 and 4mmol/l, respectively) than the other two breeds. Nguni and Bonsmara steers had higher (P<0.05) mineral levels. There were significant breed and month differences for glucose, cholesterol, creatinine, calcium, albumin, phosphorus, albumin-globulin ratio and ALP levels. Bonsmara was more susceptible to transport and pre-slaughter stress as it had the highest (P<0.05) levels of adrenalin (10.8nmol/mol), noradrenalin (9.7nmol/mol) and dopamine (14.8nmol/mol) levels, whereas the Nguni had the least levels of adrenalin (6.5nmol/mol), noradrenalin (4.6nmol/mol) and dopamine (4nmol/mol) levels. In conclusion, Nguni steers were better adapted to the local environmental conditions
- Full Text:
- Date Issued: 2008
Structural and stereochemical investigations of terrestrial and marine pyrone metabolites
- Authors: Collett, Lynne Alison
- Date: 1997
- Subjects: Metabolites , Stereochemistry , Siphonaria
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4348 , http://hdl.handle.net/10962/d1005013 , Metabolites , Stereochemistry , Siphonaria
- Description: This thesis presents an investigation into the chemistry of 6 substituted 5, 6-dihydro-a-pyrone compounds. A comprehensive review of these compounds was published in 1989 and the subsequent literature is covered in an updated review presented below. Eight 6-substituted 5,6-dihydro-a-pyrone metabolites from three different South African plant species Cryptocarya latijolia, Syncolostemon densiflorus, and Syncolostemon argenteus have been the subject of structural and stereochemical investigations. The absolute stereochemistry of the known compound "triacetate" from C. latijolia has been established as 6R-[2R,4S,6S-(triacetyloxy)heptylJ-5,6-dihydro-2H-pyran-2-one (74) using CD and acetonide formation with subsequent application of the modified Moshers method. The absolute stereochemistry of the related metabolite "diacetate", also from C. latijolia, has been assigned as 6R-[2S,4S-diacetyloxypentylJ-5,6-dihydro-2H-pyran-2-one (76). In addition, the outstanding stereochemistry at C-5' in syndenolide, from S. densiflorus, followed from conversion to its diacetonide and subsequent NMR analysis. Syndenolide is therefore 6R-[5S-(acetoxy)-IR,2R,3S-(trihydroxy)-heptylJ-5,6- dihydro-2H -pyran-2-one. The genus Syncolostemon has proved to be a rich source of a-pyrone compounds and the chemistry of S. argenteus, not investigated previously, was examined as part of an ongoing search for new 5,6-dihydro-a-pyrones. The study yielded five new a-pyrone natural products, synargentolide A-E. The structure of synargentolide A (82) has been assigned as 6R[4R,5R,6S-triacetyloxy-lE-heptenylJ-5,6-dihydro-2H-pyran-2-one using CD and NMR techniques. The structures of synargentolide B (87), C (92) and E (94) also followed from a detailed NMR analysis and the stereochemistry tentatively assigned based on CD and NMR data. Synargentolide D (93) was thermally unstable, and a paucity of material prevented stereochemical investigations, however the structure was determined from initial NMR analysis. The marine molluscs of the genus Siphonaria have only become the subject of chemical studies in the last fifteen years. These molluscs characteristically produce polypropionate type natural products. A review of Siphonarian polypropionate metabolites containing a pyrone functionality is presented. Examination of an endemic South African species Siphonaria serrata yielded one novel polypropionate metabolite containing a ),-pyrone functionality, siserrone A (131). The structure of this compound was unambiguously established using standard NMR experiments. The relative stereochemisty of the hemi-ketal moiety was assigned from a careful analysis of the ROESY NMR spectrum and the stereochemisty of the acyclic portion determined from a comparison of the 13C and 'H NMR data of a degradation product with the corresponding data of a synthetic compound. It was also established that the modified Moshers method could not be used to determine the absolute stereochemistry of the secondary hydroxy I substituent at C-11. The absolute stereochemistry of 131 was thus assigned in accordance with the proven stereochemistry of Siphonarian metabolites.
- Full Text:
- Date Issued: 1997