Plant-fungal mutualism as a strategy for the bioremediation of hydrocarbon polluted soils
- Authors: Keshinro, Olajide Muritala
- Date: 2021-10-29
- Subjects: Mutualism (Biology) , Plant-fungus relationships , Bioremediation , Mucilage , Plant exudates , Extracellular polymeric substances , Laccase , Peroxidase , Phytoremediation , Ligninolytic enzymes
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/190918 , vital:45041 , 10.21504/10962/190918
- Description: Inasmuch as coal remains the linchpin for the generation of electricity and liquid petroleum products in South Africa, hydrocarbon waste and coal discard will continue to pose a threat to the environment. Therefore, the onus is on the associated industries to develop and implement efficient and sustainable strategies to mitigate the negative impacts of energy generating activities on the environment. Most conventional efforts in this regard, although successful for soil repair and the initiation of vegetation, have been deemed unsustainable. In an effort to find a sustainable remediation strategy a novel technology termed “FungCoal” was conceptualized and patented as a strategy for the rehabilitation of open cast coal mines, carbonaceous-rich spoils and coal wastes. This biotechnology, which exploits plant-fungal mutualism to achieve effective biodegradation of coal on discard dumps and the breakdown of the carbonaceous component in spoils, promotes revegetation to facilitate rehabilitation of mining-disturbed land. However, one limiting factor of the FungCoal bioprocess is that it requires oxidized weathered coal, a highly complex and variable resource for use as a co-substrate, for growth and proliferation of the coal degrading microorganisms. To fully exploit the potential of plant-fungal mutualism and its interaction for use in the remediation of coal contaminated soils, this study investigated the proposed relationship between plant roots, root exudate and the coal degrading fungus “Aspergillus sp.” (previously Neosartorya fischeri) strain 84 in more detail, in an effort to gain further insight into the mechanisms underpinning plant-fungal mutualism as a strategy for re-vegetation of coal discard dumps and the rehabilitation of hydrocarbon-contaminated soil using the FungCoal approach. A pot-on-beaker (PoB) method was developed for the easy cultivation and collection of extracellular polymeric substance (EPS)-containing exudates from Zea mays L. (maize) and Abelmuschus esculentus (okra). Characterisation of the EPS material from these exudates was carried out using a combination of physicochemical and biochemical methods. The results from analysis of phenolics and indoles showed that exudates contain some form of indoles and phenolic compounds, although in little proportions, which may fulfil a signalling function, responsible for attracting soil microorganisms into the rhizosphere. Spectroscopic analysis of the exudates using FT-IR revealed vibrations corresponding to functional groups of alkanes, alkenes, alkynes, and carboxylic acids. These compounds likely provide an easily accessible source of carbon to soil microorganisms and are also a better alternative to the poly-aromatics which are an inherent component locked-up in the supposed recalcitrant coal material. The results from biochemical analyses also revealed the presence of carbohydrate, proteins, lipids, and low amounts of α-amino-nitrogen in the EPS of maize and okra. These components of EPS are all essential for the stimulation of enzymatic activities in soil microorganisms and, which may in turn aid biodegradation. The action of the root EPS from maize was further tested on three coal-degrading fungal isolates identified as Aspergillus strain ECCN 84, Aspergillus strain ECCN 225 and Penicillium strain ECCN 243 for manganese peroxidase (MnP) and laccase (LAC) activities. The results revealed that the Aspergillus species, strains ECCN 84 and ECCN 225, showed with or without EPS, observable black halos surrounding each of the colonies after 7d incubation indicative of positive MnP activity, while no activity was observed for the Penicillium sp. strain ECCN 243. Analysis for LAC revealed little or no activity in any of the coal degrading fungi following addition of pulverized coal to the growth medium. Interestingly, the addition of EPS-containing exudate to the coal-containing medium resulted in increased LAC activity for all fungal isolates. This finding affirmed the positive contribution of EPS to extracellular LAC activity, purported as an important enzyme in the coal biodegradation process. Finally, the impact of plant-derived exudate on the colonisation and biodegradation of coal was investigated in situ using rhizoboxes, to simulate a coal environment, and was carried out for 16 weeks. Microscopic examination of coal samples after termination of the experiment showed fungal proliferation and attachment to coal particles. All of the rhizoboxes that contained plants had higher medium pH and EC, and the concentration of phenolics, indoles and humic acids was greater than that of control treatments. These observations indicated better rhizosphere colonisation, substrate biodegradation and humification. Therefore, root exudate appears to play a significant role in coordination of soil microorganisms within the rhizosphere and likely serves both as a scaffold for rhizospheric interactions by providing microorganisms with accessible carbon and as a likely ‘trigger’ for induction of coal-degrading enzymes such as fungal LAC for mobilisation of recalcitrant carbon. This study has shown that EPS exuded from roots of Zea mays together with coal degrading fungus Aspergillus strain ECCN 84 can alkalinise the coal substrate and facilitate introduction of oxygen, possibly as a result of increased laccase activity, and increase availability of nutrients (as indicated by higher EC) in a coal-polluted rhizosphere, to provide plants and their associated mycorrhizae and presumably other beneficial microorganisms a more mesic environment for sustained phytoremediation with enhanced rehabilitation potential. In conclusion, this study confirms the positive role of root exudate in mediating a mutualistic rehabilitation strategy involving plants and fungi such as the FungCoal bioprocess. , Thesis (PhD) -- Faculty of Science, Institute for Environmental Biotechnology, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Keshinro, Olajide Muritala
- Date: 2021-10-29
- Subjects: Mutualism (Biology) , Plant-fungus relationships , Bioremediation , Mucilage , Plant exudates , Extracellular polymeric substances , Laccase , Peroxidase , Phytoremediation , Ligninolytic enzymes
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/190918 , vital:45041 , 10.21504/10962/190918
- Description: Inasmuch as coal remains the linchpin for the generation of electricity and liquid petroleum products in South Africa, hydrocarbon waste and coal discard will continue to pose a threat to the environment. Therefore, the onus is on the associated industries to develop and implement efficient and sustainable strategies to mitigate the negative impacts of energy generating activities on the environment. Most conventional efforts in this regard, although successful for soil repair and the initiation of vegetation, have been deemed unsustainable. In an effort to find a sustainable remediation strategy a novel technology termed “FungCoal” was conceptualized and patented as a strategy for the rehabilitation of open cast coal mines, carbonaceous-rich spoils and coal wastes. This biotechnology, which exploits plant-fungal mutualism to achieve effective biodegradation of coal on discard dumps and the breakdown of the carbonaceous component in spoils, promotes revegetation to facilitate rehabilitation of mining-disturbed land. However, one limiting factor of the FungCoal bioprocess is that it requires oxidized weathered coal, a highly complex and variable resource for use as a co-substrate, for growth and proliferation of the coal degrading microorganisms. To fully exploit the potential of plant-fungal mutualism and its interaction for use in the remediation of coal contaminated soils, this study investigated the proposed relationship between plant roots, root exudate and the coal degrading fungus “Aspergillus sp.” (previously Neosartorya fischeri) strain 84 in more detail, in an effort to gain further insight into the mechanisms underpinning plant-fungal mutualism as a strategy for re-vegetation of coal discard dumps and the rehabilitation of hydrocarbon-contaminated soil using the FungCoal approach. A pot-on-beaker (PoB) method was developed for the easy cultivation and collection of extracellular polymeric substance (EPS)-containing exudates from Zea mays L. (maize) and Abelmuschus esculentus (okra). Characterisation of the EPS material from these exudates was carried out using a combination of physicochemical and biochemical methods. The results from analysis of phenolics and indoles showed that exudates contain some form of indoles and phenolic compounds, although in little proportions, which may fulfil a signalling function, responsible for attracting soil microorganisms into the rhizosphere. Spectroscopic analysis of the exudates using FT-IR revealed vibrations corresponding to functional groups of alkanes, alkenes, alkynes, and carboxylic acids. These compounds likely provide an easily accessible source of carbon to soil microorganisms and are also a better alternative to the poly-aromatics which are an inherent component locked-up in the supposed recalcitrant coal material. The results from biochemical analyses also revealed the presence of carbohydrate, proteins, lipids, and low amounts of α-amino-nitrogen in the EPS of maize and okra. These components of EPS are all essential for the stimulation of enzymatic activities in soil microorganisms and, which may in turn aid biodegradation. The action of the root EPS from maize was further tested on three coal-degrading fungal isolates identified as Aspergillus strain ECCN 84, Aspergillus strain ECCN 225 and Penicillium strain ECCN 243 for manganese peroxidase (MnP) and laccase (LAC) activities. The results revealed that the Aspergillus species, strains ECCN 84 and ECCN 225, showed with or without EPS, observable black halos surrounding each of the colonies after 7d incubation indicative of positive MnP activity, while no activity was observed for the Penicillium sp. strain ECCN 243. Analysis for LAC revealed little or no activity in any of the coal degrading fungi following addition of pulverized coal to the growth medium. Interestingly, the addition of EPS-containing exudate to the coal-containing medium resulted in increased LAC activity for all fungal isolates. This finding affirmed the positive contribution of EPS to extracellular LAC activity, purported as an important enzyme in the coal biodegradation process. Finally, the impact of plant-derived exudate on the colonisation and biodegradation of coal was investigated in situ using rhizoboxes, to simulate a coal environment, and was carried out for 16 weeks. Microscopic examination of coal samples after termination of the experiment showed fungal proliferation and attachment to coal particles. All of the rhizoboxes that contained plants had higher medium pH and EC, and the concentration of phenolics, indoles and humic acids was greater than that of control treatments. These observations indicated better rhizosphere colonisation, substrate biodegradation and humification. Therefore, root exudate appears to play a significant role in coordination of soil microorganisms within the rhizosphere and likely serves both as a scaffold for rhizospheric interactions by providing microorganisms with accessible carbon and as a likely ‘trigger’ for induction of coal-degrading enzymes such as fungal LAC for mobilisation of recalcitrant carbon. This study has shown that EPS exuded from roots of Zea mays together with coal degrading fungus Aspergillus strain ECCN 84 can alkalinise the coal substrate and facilitate introduction of oxygen, possibly as a result of increased laccase activity, and increase availability of nutrients (as indicated by higher EC) in a coal-polluted rhizosphere, to provide plants and their associated mycorrhizae and presumably other beneficial microorganisms a more mesic environment for sustained phytoremediation with enhanced rehabilitation potential. In conclusion, this study confirms the positive role of root exudate in mediating a mutualistic rehabilitation strategy involving plants and fungi such as the FungCoal bioprocess. , Thesis (PhD) -- Faculty of Science, Institute for Environmental Biotechnology, 2021
- Full Text:
- Date Issued: 2021-10-29
Studies in leaf domatia-mite mutualism in South Africa
- Authors: Situngu, Sivuyisiwe
- Date: 2018
- Subjects: Insect-plant relationships , Mites , Mutualism (Biology) , Biological pest control agents
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/63334 , vital:28394
- Description: Plants have various traits which allow them to cope and resist their enemies including both insects and fungi . In some cases such traits allow plants to build mutualistic relationships with natural enemies of plant pests. This is the case in many dicotyledonous plants which produce leaf domatia. Leaf domatia are plant cavities usually found in the axils of major veins in the abaxial side of leaves. They are usually associated with mites and often mediate mutualistic relationships with predacious mites. Mites use leaf domatia primarily for shelter, to reproduce, and to develop. In turn, plants benefit from having predaceous mites on their leaves, because mites act as plant “bodyguards” and offer defence against pathogens and small arthropod herbivores. This phenomenon has been well documented all over the world, but Africa remains disproportionally understudied. The aim of this study was to fill the gap that exists in our knowledge of the extent of the distribution of leaf domatia-mite mutualisms and generate a better understanding of the diversity of mites found within leaf domatia from an African perspective. This was done by surveying plant species that bear leaf domatia from different vegetation types in South Africa. The plants with leaf domatia were examined for the presence of mites in order to determine patterns of mite abundance and diversity and, in so doing, address the following questions: • Does each tree species host have a specific mite or mite assemblage? • Do some mites prefer certain types of leaf domatia? • Do mites prefer a specific place in the tree canopy and does the microclimate in the tree canopy affect the distribution of mites? • Do different vegetation sites and types differ in their mite diversity and species composition? • Does mite abundance and diversity vary with seasons? Do coffee plantations have a different suite of mites than the adjacent forest? The anatomical structures of leaf domatia from six selected plant species(Coffea arabica, Gardenia thunbergia, Rothmannia capensis, Rothmannia globosa (Rubiaceae), Ocotea bullata (Lauraceae) and Tecoma capensis (Bignoniaceae) with different types of leaf domatia were also studied. The results from this study suggested that the key futures which distinguish domatia are the presence of an extra layer of tissue in the lower epidermis, a thick cuticle, cuticular folds, the presence of trichomes and an invagination. This study provides a better understating of the structure of leaf domatia. Leaf domatia bearing plants are widely distributed in South Africa, and species and vegetation-specific associations were assessed. Over 250 plant specimens with leaf domatia were collected and examined and more than 60 different mite species were found in association with the sampled plant species. The majority of mites found within the domatia of these tree species were predaceous and included mites from Stigmatidae, Tydeidae and Phytoseiidae. Furthermore, 15 new species were collected, suggesting that mites are understudied in South Africa. This study showed that the different vegetation types sampled did not differ markedly in terms of their mite biota and that similar mites were found across the region, and the association between leaf domatia and mites was found to be opportunistic and that mites had no preference for any particular domatia types. No host specificity relationship was observed between plants and mites. The assessment of mites associated with Coffea arabica showed that indigenous mites are able to colonise and establish a beneficial mutualism on exotic species. This is important as it ascertains that economically important plants that are cultivated outside their area of natural distribution can still benefit from this mutualism. This study also found that mite abundance and diversity in plants with leaf domatia were influenced by factors such as temperature, relative humidity and rainfall. Mite communities found in association with domatia changed as the year progressed and over the seasons. The seasonal fluctuations varied between the sampled plant species. In addition, this study found that mites were sensitive to extreme environmental conditions, and thus, mites preferred leaves found in the lower parts of the tree canopy and avoided exposed leaves. This study provides a better understanding of the distribution of domatia bearing plants in South Africa and their associated mites and contributes to our knowledge of the biodiversity of mites in the region. Furthermore, this study also adds to our understanding of the leaf domatia - mite mutualism in Africa. The applied example looking at the plant-mite mutualism in Coffea arabica highlights the importance of this mutualism in commercial plants.
- Full Text:
- Date Issued: 2018
- Authors: Situngu, Sivuyisiwe
- Date: 2018
- Subjects: Insect-plant relationships , Mites , Mutualism (Biology) , Biological pest control agents
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/63334 , vital:28394
- Description: Plants have various traits which allow them to cope and resist their enemies including both insects and fungi . In some cases such traits allow plants to build mutualistic relationships with natural enemies of plant pests. This is the case in many dicotyledonous plants which produce leaf domatia. Leaf domatia are plant cavities usually found in the axils of major veins in the abaxial side of leaves. They are usually associated with mites and often mediate mutualistic relationships with predacious mites. Mites use leaf domatia primarily for shelter, to reproduce, and to develop. In turn, plants benefit from having predaceous mites on their leaves, because mites act as plant “bodyguards” and offer defence against pathogens and small arthropod herbivores. This phenomenon has been well documented all over the world, but Africa remains disproportionally understudied. The aim of this study was to fill the gap that exists in our knowledge of the extent of the distribution of leaf domatia-mite mutualisms and generate a better understanding of the diversity of mites found within leaf domatia from an African perspective. This was done by surveying plant species that bear leaf domatia from different vegetation types in South Africa. The plants with leaf domatia were examined for the presence of mites in order to determine patterns of mite abundance and diversity and, in so doing, address the following questions: • Does each tree species host have a specific mite or mite assemblage? • Do some mites prefer certain types of leaf domatia? • Do mites prefer a specific place in the tree canopy and does the microclimate in the tree canopy affect the distribution of mites? • Do different vegetation sites and types differ in their mite diversity and species composition? • Does mite abundance and diversity vary with seasons? Do coffee plantations have a different suite of mites than the adjacent forest? The anatomical structures of leaf domatia from six selected plant species(Coffea arabica, Gardenia thunbergia, Rothmannia capensis, Rothmannia globosa (Rubiaceae), Ocotea bullata (Lauraceae) and Tecoma capensis (Bignoniaceae) with different types of leaf domatia were also studied. The results from this study suggested that the key futures which distinguish domatia are the presence of an extra layer of tissue in the lower epidermis, a thick cuticle, cuticular folds, the presence of trichomes and an invagination. This study provides a better understating of the structure of leaf domatia. Leaf domatia bearing plants are widely distributed in South Africa, and species and vegetation-specific associations were assessed. Over 250 plant specimens with leaf domatia were collected and examined and more than 60 different mite species were found in association with the sampled plant species. The majority of mites found within the domatia of these tree species were predaceous and included mites from Stigmatidae, Tydeidae and Phytoseiidae. Furthermore, 15 new species were collected, suggesting that mites are understudied in South Africa. This study showed that the different vegetation types sampled did not differ markedly in terms of their mite biota and that similar mites were found across the region, and the association between leaf domatia and mites was found to be opportunistic and that mites had no preference for any particular domatia types. No host specificity relationship was observed between plants and mites. The assessment of mites associated with Coffea arabica showed that indigenous mites are able to colonise and establish a beneficial mutualism on exotic species. This is important as it ascertains that economically important plants that are cultivated outside their area of natural distribution can still benefit from this mutualism. This study also found that mite abundance and diversity in plants with leaf domatia were influenced by factors such as temperature, relative humidity and rainfall. Mite communities found in association with domatia changed as the year progressed and over the seasons. The seasonal fluctuations varied between the sampled plant species. In addition, this study found that mites were sensitive to extreme environmental conditions, and thus, mites preferred leaves found in the lower parts of the tree canopy and avoided exposed leaves. This study provides a better understanding of the distribution of domatia bearing plants in South Africa and their associated mites and contributes to our knowledge of the biodiversity of mites in the region. Furthermore, this study also adds to our understanding of the leaf domatia - mite mutualism in Africa. The applied example looking at the plant-mite mutualism in Coffea arabica highlights the importance of this mutualism in commercial plants.
- Full Text:
- Date Issued: 2018
Interactions between fig wasps and their host figs
- Authors: Nefdt, Rory John Charlton
- Date: 1990
- Subjects: Wasps , Mutualism (Biology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5718 , http://hdl.handle.net/10962/d1005404 , Wasps , Mutualism (Biology)
- Description: Fig trees (Ficus spp.) and fig wasps (Hymenoptera: Agaonidae) are partners in an intimate mutualism. The trees provide ovules in which wasp larvae develop while the wasps pollinate the flowers and are therefore indispensible for fig seed production. Agaonid fig wasps oviposit down the styles of fig flowers and it has generally been accepted that they were unable to reach the ovules of "long" styled flowers , which would produce seeds, thus maintaining an evolutionary stable mutualism. African fig species were found to have unimodal style length frequencies, with no separation into long and short styled flowers. In several species the ovipositors of their associated agaonids were long enough to reach the majority of ovules. The number of foundress agaonids entering a fig influenced fig seed set and therefore was an important factor regulating the proportion of flowers producing seeds or pollinators. In the two Ficus species that were studied, entry of more than three agaonid foundresses into one fig resulted in competition for limited oviposition sites and less female - biased offspring sex ratios. It is hypothesised that sequential laying of male eggs followed by female eggs, under variable oviposition site limitation, results in sex ratio adjustment, as predicted by local mate competition theory. Evidence in support of this hypothesis is presented. A number of non - pollinating torymid and pteromalid fig wasps also oviposit into each fig species. The sycophagines and sycoecines oviposit down the styles from inside the fig inflorescences like their agaonid counterparts, while other species insert their ovipositors through the wall of the fig from the outside. Like the agaonids, sycophagines were characterised by being pro - ovigenic, with numerous fully developed eggs at emergence. Sycoecines were able to re - emerge from figs they had oviposited in and lay their eggs in more than one fig. They had short ovipositors, allowing access to a smaller proportion of flowers than agaonids or sycophagines. Externally ovipositing fig wasps were syn-ovigenic, able to develop eggs as adults and invested more energy and time during each oviposition event. Differences in the ovipositor lengths of these species did not segregate their oviposition sites spatially, and therefore does not reduce competition between species. Attack by parasitoids and inquiline fig wasps from the exterior did not constitute a selection pressure against agaonids ovipositing in ovules closer to the periphery of the fig's surface, as predicted by Michaloud's enemy-free-space hypothes is. It cannot therefore explain the preference shown by ovipositing agaonids for shorter styled flowers.
- Full Text:
- Date Issued: 1990
- Authors: Nefdt, Rory John Charlton
- Date: 1990
- Subjects: Wasps , Mutualism (Biology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5718 , http://hdl.handle.net/10962/d1005404 , Wasps , Mutualism (Biology)
- Description: Fig trees (Ficus spp.) and fig wasps (Hymenoptera: Agaonidae) are partners in an intimate mutualism. The trees provide ovules in which wasp larvae develop while the wasps pollinate the flowers and are therefore indispensible for fig seed production. Agaonid fig wasps oviposit down the styles of fig flowers and it has generally been accepted that they were unable to reach the ovules of "long" styled flowers , which would produce seeds, thus maintaining an evolutionary stable mutualism. African fig species were found to have unimodal style length frequencies, with no separation into long and short styled flowers. In several species the ovipositors of their associated agaonids were long enough to reach the majority of ovules. The number of foundress agaonids entering a fig influenced fig seed set and therefore was an important factor regulating the proportion of flowers producing seeds or pollinators. In the two Ficus species that were studied, entry of more than three agaonid foundresses into one fig resulted in competition for limited oviposition sites and less female - biased offspring sex ratios. It is hypothesised that sequential laying of male eggs followed by female eggs, under variable oviposition site limitation, results in sex ratio adjustment, as predicted by local mate competition theory. Evidence in support of this hypothesis is presented. A number of non - pollinating torymid and pteromalid fig wasps also oviposit into each fig species. The sycophagines and sycoecines oviposit down the styles from inside the fig inflorescences like their agaonid counterparts, while other species insert their ovipositors through the wall of the fig from the outside. Like the agaonids, sycophagines were characterised by being pro - ovigenic, with numerous fully developed eggs at emergence. Sycoecines were able to re - emerge from figs they had oviposited in and lay their eggs in more than one fig. They had short ovipositors, allowing access to a smaller proportion of flowers than agaonids or sycophagines. Externally ovipositing fig wasps were syn-ovigenic, able to develop eggs as adults and invested more energy and time during each oviposition event. Differences in the ovipositor lengths of these species did not segregate their oviposition sites spatially, and therefore does not reduce competition between species. Attack by parasitoids and inquiline fig wasps from the exterior did not constitute a selection pressure against agaonids ovipositing in ovules closer to the periphery of the fig's surface, as predicted by Michaloud's enemy-free-space hypothes is. It cannot therefore explain the preference shown by ovipositing agaonids for shorter styled flowers.
- Full Text:
- Date Issued: 1990
- «
- ‹
- 1
- ›
- »