The development of platinum and palladium-selective polymeric materials
- Authors: Fayemi, Omolola Esther
- Date: 2013 , 2013-05-03
- Subjects: Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4287 , http://hdl.handle.net/10962/d1002964 , Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species (PtCl₆²⁻ and PdCl₄²⁻) on polystyrene-based beads and nanofibers as well as silica microparticles functionalized with polyamine centres derived from ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) is described. The functionalized sorbent materials were characterized by using microanalysis, SEM, XPS, BET and FTIR. The nanofiber sorbent material functionalized with ethylenediamine (F-EDA) had the highest loading capacity which was attributed to its high nitrogen content (10.83%) and larger surface area (241.3m²/g). The adsorption and loading capacities of the sorption materials were investigated using both the batch and column studies in 1 M HCI. The adsorption studies for both PtCl₆²⁻ and PdCl₄²⁻ on the polystyrene-based sorbent materials fit the Langmuir isotherm while the silica-based sorbents fitted the Freundlich isotherm with R² values > 0.99. In the column experiment the highest loading capacity of Pt and Pd were 7.4 mg/g and 4.3 mg/g respectively on the nanofiber sorbent material based on ethylenediamine (EDA). The polystyrene and silica-based resins with triethylenetetramine (TETA) functionality (M-TETA and S-TETA) showed selectivity for platinum and palladium, respectively. Metal chlorido complexes loaded on the sorbent materials were recovered by using 3% m/v thiourea solution as teh eluting agent with quantitative desorption efficiency under the selected experimental conditions. The separation of platinum from palladium was partially achieved by selective stripping of PtCl₆²⁻ with 0.5 M of NaClO₄ in 1.0 M HCI with PdCl₄²⁻ was eluted with 0.5 M thiourea in 1.0 M HCI. The selectivity of the M-TETA and S-TETA sorbent materials was proved by column separation of platinum(IV) and palladium(II), respectively, from synthetic solutions containing iridium(IV) and rhodium(III). The loading capacity for platinum on M-TETA was 0.09 mg/g while it was 0.27 mg/g for palladium on S-TETA. , Acrobat PDFMaker 10.1 for Word , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2013
Ruthenium and palladium assisted silver transport in silicon carbide
- Authors: O'Connell, Jacques Herman
- Date: 2012
- Subjects: Gas cooled reactors , Ruthenium , Palladium , Silicon carbide
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10404 , http://hdl.handle.net/10948/d1010960 , Gas cooled reactors , Ruthenium , Palladium , Silicon carbide
- Full Text:
- Date Issued: 2012