Neuronal nitric oxide synthase : a biomarker for Alzheimers disease : interaction of neuronal nitric oxide synthase with beta-amyloid peptides in the brain
- Authors: Padayachee, Eden Rebecca
- Date: 2011 , 2013-07-19
- Subjects: Alzheimer's disease , Nitric-oxide synthase , Biochemical markers , Amyloid beta-protein , Peptide hormones
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4086 , http://hdl.handle.net/10962/d1007677 , Alzheimer's disease , Nitric-oxide synthase , Biochemical markers , Amyloid beta-protein , Peptide hormones
- Description: High levels of the amino acid arginine and low levels of the product citrulline in the cerebrospinal fluid of Alzheimer's patients could mean that there is a decrease in the enzymes that metabolize this amino acid. One such enzyme is neuronal nitric oxide synthase (nNOS). In this study, neuronal nitric oxide synthase (nNOS), sourced from bovine brain was extracted and concentrated using two methods of precipitation: poly (ethylene glycol) 20 000 (PEG) and ammonium sulphate [(NH₄)₂S0₄). These two techniques gave no increase in yield nor fold purification and hence were abandoned in favour of ion exchange chromatography by DEAE-Sepharose. The enzyme was then successfully purified by anion-exchange and after dialysis produced a 38% yield and three fold purification and yielded the highest specific activity of 2.27 U/mg. Neuronal nitric oxide synthase (nNOS) was a heterodimeric protein with a total molecular mass of ± 225 kDa (95 and 130 kDa monomers). The temperature and pH optima of the enzyme were 40⁰C and 6.5, respectively. The kinetic parameters (KM and Vmax) of nNOS were 70 μM and 0.332 μmol.min⁻¹, respectively. Moreover neuronal nitric oxide synthase (nNOS) was relatively stable at 40⁰C (t½ = 3 h). It was also confirmed that β-amyloid peptides inhibited nNOS when bound to the enzyme and that nNOS behaved as a catalyst in fibril formation through association-dissociation between enzyme and β-amyloid peptide. It was further shown that Aβ₁₇₋₂₈ inhibited nNOS the most with a Ki of 1.92 μM and also had the highest Stern-Volmer value (Ksv) of 0.11 μM⁻¹ indicating tight binding affinity to nNOS and easier accessibility to fluor molecules during binding. Congo red, turbidity, thioflavin-T assays and transmission electron microscopy were successfully used to detect and visualize the presence of fibrils by studying the process of fibrillogenesis. Computerized molecular modeling successfully studied protein dynamics and conformational changes of nNOS. These results correlated with resonance energy transfer (FRET) results which revealed the distance of tryptophan residues from the arginine bound at enzyme active site. Both the aforementioned techniques revealed that in the natural state of the enzyme with arginine bound at the active site, the tryptophan residues (TRP₆₂₅ and TRP₇₂₁) were positioned at the surface of the enzyme 28 Å away from the active site. When the amyloid peptide (Aβ₁₇₋₂₈) was bound to the active site, these same two amino acids moved 14 Å closer to the active site. A five residue hydrophobic fragment Aβ₁₇₋₂₁ [Leu₁₇ - Val₁₈ - Phe₁₉ - Phe₂₀ - Ala₁] within Aβ₁₇₋₂₈ was shown by computer modeling to be critical to the binding of the peptide to the active site of nNOS.
- Full Text:
- Date Issued: 2011
- Authors: Padayachee, Eden Rebecca
- Date: 2011 , 2013-07-19
- Subjects: Alzheimer's disease , Nitric-oxide synthase , Biochemical markers , Amyloid beta-protein , Peptide hormones
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4086 , http://hdl.handle.net/10962/d1007677 , Alzheimer's disease , Nitric-oxide synthase , Biochemical markers , Amyloid beta-protein , Peptide hormones
- Description: High levels of the amino acid arginine and low levels of the product citrulline in the cerebrospinal fluid of Alzheimer's patients could mean that there is a decrease in the enzymes that metabolize this amino acid. One such enzyme is neuronal nitric oxide synthase (nNOS). In this study, neuronal nitric oxide synthase (nNOS), sourced from bovine brain was extracted and concentrated using two methods of precipitation: poly (ethylene glycol) 20 000 (PEG) and ammonium sulphate [(NH₄)₂S0₄). These two techniques gave no increase in yield nor fold purification and hence were abandoned in favour of ion exchange chromatography by DEAE-Sepharose. The enzyme was then successfully purified by anion-exchange and after dialysis produced a 38% yield and three fold purification and yielded the highest specific activity of 2.27 U/mg. Neuronal nitric oxide synthase (nNOS) was a heterodimeric protein with a total molecular mass of ± 225 kDa (95 and 130 kDa monomers). The temperature and pH optima of the enzyme were 40⁰C and 6.5, respectively. The kinetic parameters (KM and Vmax) of nNOS were 70 μM and 0.332 μmol.min⁻¹, respectively. Moreover neuronal nitric oxide synthase (nNOS) was relatively stable at 40⁰C (t½ = 3 h). It was also confirmed that β-amyloid peptides inhibited nNOS when bound to the enzyme and that nNOS behaved as a catalyst in fibril formation through association-dissociation between enzyme and β-amyloid peptide. It was further shown that Aβ₁₇₋₂₈ inhibited nNOS the most with a Ki of 1.92 μM and also had the highest Stern-Volmer value (Ksv) of 0.11 μM⁻¹ indicating tight binding affinity to nNOS and easier accessibility to fluor molecules during binding. Congo red, turbidity, thioflavin-T assays and transmission electron microscopy were successfully used to detect and visualize the presence of fibrils by studying the process of fibrillogenesis. Computerized molecular modeling successfully studied protein dynamics and conformational changes of nNOS. These results correlated with resonance energy transfer (FRET) results which revealed the distance of tryptophan residues from the arginine bound at enzyme active site. Both the aforementioned techniques revealed that in the natural state of the enzyme with arginine bound at the active site, the tryptophan residues (TRP₆₂₅ and TRP₇₂₁) were positioned at the surface of the enzyme 28 Å away from the active site. When the amyloid peptide (Aβ₁₇₋₂₈) was bound to the active site, these same two amino acids moved 14 Å closer to the active site. A five residue hydrophobic fragment Aβ₁₇₋₂₁ [Leu₁₇ - Val₁₈ - Phe₁₉ - Phe₂₀ - Ala₁] within Aβ₁₇₋₂₈ was shown by computer modeling to be critical to the binding of the peptide to the active site of nNOS.
- Full Text:
- Date Issued: 2011
Evolutionary development and functional role of plant natriuretic peptide (PNP)-B
- Authors: Hove, Runyararo Memory
- Date: 2009
- Subjects: Plant hormones , Peptides , Plant gene expression , Peptide hormones , Peptides -- Separation
- Language: English
- Type: Thesis , Masters , MSc (Biochemistry)
- Identifier: vital:11251 , http://hdl.handle.net/10353/155 , Plant hormones , Peptides , Plant gene expression , Peptide hormones , Peptides -- Separation
- Description: Plant natriuretic peptides (PNP) are novel peptides which, like in vertebrates, have been shown to have a function associated with water and salt homeostasis. Two PNP-encoding genes have been identified and isolated from Arabidopsis thaliana, namely; AtPNP-A and AtPNP-B. In this study, the focus was on PNP-B, which has not been extensively studied. Bioinformatic analysis was done on the AtPNP-B gene. This included the bioinformatic study of its primary structure, secondary structure, tertiary structure, transcription factor binding sites (TFBS) and its relation to other known proteins. The AtPNP-B gene was shown to be a 510 bp long, including a predicted 138 bp intron. AtPNP-B was also shown to have some sequence similarity with AtPNP-A and CjBAp12. The TFBS for AtPNP-B and OsJPNP-B were compared and they comprised of TFBS that are related to water homeostasis and pathogenesis. This suggested two possible functions; water stress and homeostasis and a pathogenesis related function for PNP-B. Following bioinformatic analysis, the heterologous expression of the AtPNP-B was attempted to investigate whether the AtPNP-B gene encoded a functional protein and to determine the functional role of PNP-B. However, expression was unsuccessful. An evolutionary study was then carried out which revealed that there were some plants without the intron such as, rice, leafy spurge, oilseed rape, onion, poplar, sugar cane, sunflower and tobacco. These plants would therefore be used for expression and functional studies in the future. The evolutionary studies also revealed that PNP-B had a relationship with expansins and the endoglucanase family 45. Other PNP-B related molecules were also obtained from other plant genomes and therefore used in the construction of a phylogenetic tree. The phylogenetic tree revealed that AtPNP-B clustered in the same group as CjBAp12 while AtPNP-A had its own cluster group. There were also other PNP-B like molecules that clustered in the same group as expansins (α- and β-). Thus, we postulate that, like PNP-A, PNP-B also has a possible function in water and salt homeostasis. However, due to the clustering iii of AtPNP-B into the same group as CjBAp12, a possible role of PNP-B in pathogenesis-related response is also postulated.
- Full Text:
- Date Issued: 2009
- Authors: Hove, Runyararo Memory
- Date: 2009
- Subjects: Plant hormones , Peptides , Plant gene expression , Peptide hormones , Peptides -- Separation
- Language: English
- Type: Thesis , Masters , MSc (Biochemistry)
- Identifier: vital:11251 , http://hdl.handle.net/10353/155 , Plant hormones , Peptides , Plant gene expression , Peptide hormones , Peptides -- Separation
- Description: Plant natriuretic peptides (PNP) are novel peptides which, like in vertebrates, have been shown to have a function associated with water and salt homeostasis. Two PNP-encoding genes have been identified and isolated from Arabidopsis thaliana, namely; AtPNP-A and AtPNP-B. In this study, the focus was on PNP-B, which has not been extensively studied. Bioinformatic analysis was done on the AtPNP-B gene. This included the bioinformatic study of its primary structure, secondary structure, tertiary structure, transcription factor binding sites (TFBS) and its relation to other known proteins. The AtPNP-B gene was shown to be a 510 bp long, including a predicted 138 bp intron. AtPNP-B was also shown to have some sequence similarity with AtPNP-A and CjBAp12. The TFBS for AtPNP-B and OsJPNP-B were compared and they comprised of TFBS that are related to water homeostasis and pathogenesis. This suggested two possible functions; water stress and homeostasis and a pathogenesis related function for PNP-B. Following bioinformatic analysis, the heterologous expression of the AtPNP-B was attempted to investigate whether the AtPNP-B gene encoded a functional protein and to determine the functional role of PNP-B. However, expression was unsuccessful. An evolutionary study was then carried out which revealed that there were some plants without the intron such as, rice, leafy spurge, oilseed rape, onion, poplar, sugar cane, sunflower and tobacco. These plants would therefore be used for expression and functional studies in the future. The evolutionary studies also revealed that PNP-B had a relationship with expansins and the endoglucanase family 45. Other PNP-B related molecules were also obtained from other plant genomes and therefore used in the construction of a phylogenetic tree. The phylogenetic tree revealed that AtPNP-B clustered in the same group as CjBAp12 while AtPNP-A had its own cluster group. There were also other PNP-B like molecules that clustered in the same group as expansins (α- and β-). Thus, we postulate that, like PNP-A, PNP-B also has a possible function in water and salt homeostasis. However, due to the clustering iii of AtPNP-B into the same group as CjBAp12, a possible role of PNP-B in pathogenesis-related response is also postulated.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »