Resource recovery options in brewery effluent treatment using activated sludge and high rate algal ponds: assessing environmental impacts
- Authors: Taylor, Richard Peter
- Date: 2020
- Subjects: Sewage -- Purification -- Activated sludge process , Sewage disposal plants , Sewage -- Purification -- Biological treatament , Sewage -- Purification -- Nitrogen removal , Brewery waste , Breweries -- Waste disposal , Microalgae -- Biotechnology , Algal biofuels
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/153746 , vital:39507
- Description: Wastewater treatment plants (WWTPs) are designed to clean effluents, but they also consume resources and produce waste. Various treatment technologies allow for the recovery of energy, nutrients and water from effluents turning this waste into products, which increases their sustainability and decreases the impact of WWTPs on the environment. There is a lack of literature which comprehensively compares the treatment performances, environmental impacts and beneficial downstream uses of the biomass generated by high rate algal pond (HRAP) and activated sludge (AS) treatment systems. This thesis aimed to compare (1) effluent treatment performance, (2) emissions and (3) downstream use of algae cultured in HRAP to sludge produced in AS and to obtain data to conduct a life cycle analysis (LCA) to compare the systems. The focus was on adding value to the effluent treatment process, while identifying the associated environmental impacts and contributing to the first ever zero-waste brewery effluent treatment system. Furthermore, these data were used to provide a basis to critically review and contribute to improving the methods used in the LCA of effluent treatment systems; particularly since this was the first wastewater treatment LCA that compared AS and HRAP using data collected from the same temporal and geographic location and from a single effluent stream. The electrical consumption water emission and land application of waste biomass caused the major environmental impacts of both treatment systems. The HRAP had less than 50 % of the electrical energy consumption (0.11±0.01 kW/m3 of effluent treated) compared to the AS system (0.29±0.11 kW/m3) which resulted in the technology having a lower climate change, photochemical oxidant formation, freshwater and marine ecotoxicity and fossil fuel depletion impact. It is imperative to understand the method of electrical energy (fossil fuel vs renewable) generation when conducting a LCA and deciding which technologies to use, since they have a major influence on the aforementioned impacts. The biogas yield of algal and sludge substrates was similar with an average gas production of 241 ml/g volatile solids fed. Biogas from algae fed digesters had a significantly higher methane content (64.73±0.81 %) and lower carbon dioxide content (22.94±0.24 %) when compared to WAS fed digesters (60.08±0.18 % and 27.37±0.43 %) respectively due to it being a less oxidised substrate. Swiss chard plants (Beta vulgaris) fertilised with anaerobically digested (AD) algae or sludge had a significantly higher mean biweekly yield (5.08±0.73 kg/m2) when compared to the inorganic-fertiliser control (3.45±0.89 kg/m2; p<0.0001). No difference was observed in the soil’s physical fertility when algae or sludge were applied to the soil (p>0.05). The HRAP produced more biomass (317.18±27.76 g/m3) than the AS (83.12±64.91 g/m3), which resulted in a significantly greater downstream production of biogas and fertiliser per volume of effluent treated. According to the LCA, this also resulted in the HRAP system having a higher terrestrial ecotoxicity, due to the greater volume of solids and thus heavy metals applied to the soil. This interpretation can be misleading, because the mass of heavy metals released into the environment is the same for both systems, with a greater portion being applied to the land in the HRAP scenario and discharged into fresh water in the case of AS. Future LCA models should clarify if these biomasses are going to be applied to a single piece of land or multiple sites as this will influence the risk of contamination via pollutant build up in the soil. The application of sludge or algae on soil increased the soil’s sodium concentration and sodium absorption ratio from 774.80±13.66 mg/kg to 952.17±34.89 mg/kg and 2.91±0.04 to 3.53±0.13, respectively. Regulations on the application of algae or sludge on agricultural soils should be altered to consider the limit values for sodium and future LCA’s associated with effluent treatment facilities should incorporate the possibility of soil contamination through sodium build-up. This work also conceptualised the importance of reporting water emissions in wastewater treatment LCA in as much detail as possible, because this had a significant influence on the eutrophication impacts on water systems. Reporting water emissions as total nitrogen underestimated downstream eutrophication impacts compared with those using nitrogen-species concentration (ammonia, nitrite, nitrate etc). A marine eutrophication sensitivity co-efficient should be included in future LCA models which accounts for the probability of nitrogen and phosphorus emissions entering the coastal environment as well as the vulnerability of the marine environment to eutrophication. Activated sludge systems are favourable for situations where space is limited, were there are inadequate options for biomass disposal (biomass not be used in agriculture or AD) and were electricity is generated from a renewable source; whereas, HRAP are more suitable under circumstances where electricity production relies on fossil fuel that carries a high environmental impact and where options are available to use the biomass for economic gain such as biogas and fertiliser production. This thesis contributes towards a zero-waste brewery effluent treated process. The HRAP and AS treated effluent for reuse in the brewery or in agricultural irrigation. The solids were anaerobically digested, and the carbon was recovered as a biogas, while the digestate was applied as an agricultural fertiliser. This allowed for the recovery of water, nutrients and carbon.
- Full Text:
- Date Issued: 2020
- Authors: Taylor, Richard Peter
- Date: 2020
- Subjects: Sewage -- Purification -- Activated sludge process , Sewage disposal plants , Sewage -- Purification -- Biological treatament , Sewage -- Purification -- Nitrogen removal , Brewery waste , Breweries -- Waste disposal , Microalgae -- Biotechnology , Algal biofuels
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/153746 , vital:39507
- Description: Wastewater treatment plants (WWTPs) are designed to clean effluents, but they also consume resources and produce waste. Various treatment technologies allow for the recovery of energy, nutrients and water from effluents turning this waste into products, which increases their sustainability and decreases the impact of WWTPs on the environment. There is a lack of literature which comprehensively compares the treatment performances, environmental impacts and beneficial downstream uses of the biomass generated by high rate algal pond (HRAP) and activated sludge (AS) treatment systems. This thesis aimed to compare (1) effluent treatment performance, (2) emissions and (3) downstream use of algae cultured in HRAP to sludge produced in AS and to obtain data to conduct a life cycle analysis (LCA) to compare the systems. The focus was on adding value to the effluent treatment process, while identifying the associated environmental impacts and contributing to the first ever zero-waste brewery effluent treatment system. Furthermore, these data were used to provide a basis to critically review and contribute to improving the methods used in the LCA of effluent treatment systems; particularly since this was the first wastewater treatment LCA that compared AS and HRAP using data collected from the same temporal and geographic location and from a single effluent stream. The electrical consumption water emission and land application of waste biomass caused the major environmental impacts of both treatment systems. The HRAP had less than 50 % of the electrical energy consumption (0.11±0.01 kW/m3 of effluent treated) compared to the AS system (0.29±0.11 kW/m3) which resulted in the technology having a lower climate change, photochemical oxidant formation, freshwater and marine ecotoxicity and fossil fuel depletion impact. It is imperative to understand the method of electrical energy (fossil fuel vs renewable) generation when conducting a LCA and deciding which technologies to use, since they have a major influence on the aforementioned impacts. The biogas yield of algal and sludge substrates was similar with an average gas production of 241 ml/g volatile solids fed. Biogas from algae fed digesters had a significantly higher methane content (64.73±0.81 %) and lower carbon dioxide content (22.94±0.24 %) when compared to WAS fed digesters (60.08±0.18 % and 27.37±0.43 %) respectively due to it being a less oxidised substrate. Swiss chard plants (Beta vulgaris) fertilised with anaerobically digested (AD) algae or sludge had a significantly higher mean biweekly yield (5.08±0.73 kg/m2) when compared to the inorganic-fertiliser control (3.45±0.89 kg/m2; p<0.0001). No difference was observed in the soil’s physical fertility when algae or sludge were applied to the soil (p>0.05). The HRAP produced more biomass (317.18±27.76 g/m3) than the AS (83.12±64.91 g/m3), which resulted in a significantly greater downstream production of biogas and fertiliser per volume of effluent treated. According to the LCA, this also resulted in the HRAP system having a higher terrestrial ecotoxicity, due to the greater volume of solids and thus heavy metals applied to the soil. This interpretation can be misleading, because the mass of heavy metals released into the environment is the same for both systems, with a greater portion being applied to the land in the HRAP scenario and discharged into fresh water in the case of AS. Future LCA models should clarify if these biomasses are going to be applied to a single piece of land or multiple sites as this will influence the risk of contamination via pollutant build up in the soil. The application of sludge or algae on soil increased the soil’s sodium concentration and sodium absorption ratio from 774.80±13.66 mg/kg to 952.17±34.89 mg/kg and 2.91±0.04 to 3.53±0.13, respectively. Regulations on the application of algae or sludge on agricultural soils should be altered to consider the limit values for sodium and future LCA’s associated with effluent treatment facilities should incorporate the possibility of soil contamination through sodium build-up. This work also conceptualised the importance of reporting water emissions in wastewater treatment LCA in as much detail as possible, because this had a significant influence on the eutrophication impacts on water systems. Reporting water emissions as total nitrogen underestimated downstream eutrophication impacts compared with those using nitrogen-species concentration (ammonia, nitrite, nitrate etc). A marine eutrophication sensitivity co-efficient should be included in future LCA models which accounts for the probability of nitrogen and phosphorus emissions entering the coastal environment as well as the vulnerability of the marine environment to eutrophication. Activated sludge systems are favourable for situations where space is limited, were there are inadequate options for biomass disposal (biomass not be used in agriculture or AD) and were electricity is generated from a renewable source; whereas, HRAP are more suitable under circumstances where electricity production relies on fossil fuel that carries a high environmental impact and where options are available to use the biomass for economic gain such as biogas and fertiliser production. This thesis contributes towards a zero-waste brewery effluent treated process. The HRAP and AS treated effluent for reuse in the brewery or in agricultural irrigation. The solids were anaerobically digested, and the carbon was recovered as a biogas, while the digestate was applied as an agricultural fertiliser. This allowed for the recovery of water, nutrients and carbon.
- Full Text:
- Date Issued: 2020
Water quality, biomass and extracellular polymeric substances in an integrated algae pond system
- Authors: Jimoh, Taobat Adekilekun
- Date: 2018
- Subjects: Water -- Purification , Sewage -- Purification -- Anaerobic treatment , Sewage lagoons , Sewage disposal plants , ASPAM model (Acid mine drainage) , Integrated algae pond systems (IAPS)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/57307 , vital:26871
- Description: Integrated algae pond systems (IAPS) combine the use of anaerobic and aerobic bioprocesses to effect wastewater treatment. Although, IAPS as a technology process offers many advantages including efficient and simultaneous N and P removal, no requirement for additional chemicals, O2 generation, CO2 mitigation, and a biomass with potential for valorization, a lack of technological advancement and the need for large land area, has limited the reach of this technology at industrial scale. In mitigation, peroxonation was introduced as a tertiary treatment unit and its effect on COD and TSS of IAPS treated water investigated. An effort was made to characterize the soluble but persistent COD in IAPS treated water and, productivity of the HRAOP mixed liquor was investigated to gain insight into the potential use of this biomass. Results show that peroxone treatment effectively reduced COD, TSS, and nutrient load of IAPS water without any significant impact on land area requirement. Indeed, summary data describing the effect of peroxone on quality of IAPS-treated water confirmed that it complies with the general limit values for either irrigation or discharge into a water resource that is not a listed water resource for volumes up to 2 ML of treated wastewater on any given day. Extraction followed by FT-IR spectroscopy was used to confirm albeit tentatively, the identity of the soluble but persistent COD in IAPS treated water as MaB-floc EPS. Results show that MaB-flocs from HRAOPs are assemblages of microorganisms produced as discrete aggregates as a result of microbial EPS production. A relationship between photosynthesis and EPS production was established by quantification of the EPS following exposure of MaB-flocs to either continuous light or darkness. Several novel strains of bacteria were isolated from HRAOP mixed liquor and 16S ribosomal genomic sequence analysis resulted in the molecular characterization of Planococcus maitriensis strain ECCN 45b. This is the first report of Planococcus maitriensis from a wastewater treatment process. Productivity and change in MaB-flocs concentration, measured as mixed liquor suspended solids (MLSS) between morning and evening were monitored and revealed that MLSS is composed of microalgae and bacteria but not fungi. Concentration varied from 77 mg L-1 in September (winter) to 285 mg L-1 in November (spring); pond productivity increased from 5.8 g m-2 d-1 (winter) to 21.5 g m-2 d-1 (spring); and, irrespective of MLSS concentration in late afternoon, approximately 39% was lost overnight, which presumably occurred due to passive removal by the algae settling pond. The outcomes of this research are discussed in terms of the quality of treated water, and the further development of IAPS as a platform technology for establishing a biorefinery within the wastewater treatment sector.
- Full Text:
- Date Issued: 2018
- Authors: Jimoh, Taobat Adekilekun
- Date: 2018
- Subjects: Water -- Purification , Sewage -- Purification -- Anaerobic treatment , Sewage lagoons , Sewage disposal plants , ASPAM model (Acid mine drainage) , Integrated algae pond systems (IAPS)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/57307 , vital:26871
- Description: Integrated algae pond systems (IAPS) combine the use of anaerobic and aerobic bioprocesses to effect wastewater treatment. Although, IAPS as a technology process offers many advantages including efficient and simultaneous N and P removal, no requirement for additional chemicals, O2 generation, CO2 mitigation, and a biomass with potential for valorization, a lack of technological advancement and the need for large land area, has limited the reach of this technology at industrial scale. In mitigation, peroxonation was introduced as a tertiary treatment unit and its effect on COD and TSS of IAPS treated water investigated. An effort was made to characterize the soluble but persistent COD in IAPS treated water and, productivity of the HRAOP mixed liquor was investigated to gain insight into the potential use of this biomass. Results show that peroxone treatment effectively reduced COD, TSS, and nutrient load of IAPS water without any significant impact on land area requirement. Indeed, summary data describing the effect of peroxone on quality of IAPS-treated water confirmed that it complies with the general limit values for either irrigation or discharge into a water resource that is not a listed water resource for volumes up to 2 ML of treated wastewater on any given day. Extraction followed by FT-IR spectroscopy was used to confirm albeit tentatively, the identity of the soluble but persistent COD in IAPS treated water as MaB-floc EPS. Results show that MaB-flocs from HRAOPs are assemblages of microorganisms produced as discrete aggregates as a result of microbial EPS production. A relationship between photosynthesis and EPS production was established by quantification of the EPS following exposure of MaB-flocs to either continuous light or darkness. Several novel strains of bacteria were isolated from HRAOP mixed liquor and 16S ribosomal genomic sequence analysis resulted in the molecular characterization of Planococcus maitriensis strain ECCN 45b. This is the first report of Planococcus maitriensis from a wastewater treatment process. Productivity and change in MaB-flocs concentration, measured as mixed liquor suspended solids (MLSS) between morning and evening were monitored and revealed that MLSS is composed of microalgae and bacteria but not fungi. Concentration varied from 77 mg L-1 in September (winter) to 285 mg L-1 in November (spring); pond productivity increased from 5.8 g m-2 d-1 (winter) to 21.5 g m-2 d-1 (spring); and, irrespective of MLSS concentration in late afternoon, approximately 39% was lost overnight, which presumably occurred due to passive removal by the algae settling pond. The outcomes of this research are discussed in terms of the quality of treated water, and the further development of IAPS as a platform technology for establishing a biorefinery within the wastewater treatment sector.
- Full Text:
- Date Issued: 2018
Assessment of the prevalence of faecal coliforms and Escherichia coli o157:h7 in the final effluents of two wastewater treatment plants in Amahlathi Local Municipality of Eastern Cape Province, South Africa
- Authors: Ajibade, Adefisoye Martins
- Date: 2014
- Subjects: Sewage disposal plants , Escherichia coli -- South Africa -- Eastern Cape , Escherichia coli O157:H7 , Escherichia coli , Effluent quality -- Testing , Whole effluent toxicity testing , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11283 , http://hdl.handle.net/10353/d1016166 , Sewage disposal plants , Escherichia coli -- South Africa -- Eastern Cape , Escherichia coli O157:H7 , Escherichia coli , Effluent quality -- Testing , Whole effluent toxicity testing , Water -- Purification
- Description: The production of final effluents that meet discharged requirements and guidelines remain a major challenge particularly in the developing world with the resultant problem of surface water pollution. This study assessed the physicochemical and microbiological qualities of two wastewater treatment works in the Eastern Cape Province of South Africa in terms of the prevalence of faecal coliforms and Escherichia coli O157:H7 over a five month period. All physicochemical and microbiological analyses were carried out using standard methods. Data were collected in triplicates and analysed statistically using IBM SPSS version 20.0. The ranges of some of the physicochemical parameters that complied with set guidelines include pH (6.7 – 7.6), TDS (107 – 171 mg/L), EC (168 – 266 μS/cm), Temperature (15 – 24oC), NO3- (0 – 8.2 mg/L), NO2- (0.14 – 0.71 mg/L) and PO4 (1.05 – 4.50 mg/L). Others including Turbidity (2.64 – 58.00 NTU), Free Cl (0.13 – 0.65 mg/L), DO (2.20 – 8.48 mg/L), BOD (0.13 – 6.85 mg/L) and COD (40 – 482 mg/L) did not comply with set guidelines. The microbiological parameters ranged 0 – 2.7 × 104 CFU/100 ml for FC and 0 – 9.3 × 103 for EHEC CFU/100 ml, an indication of non-compliance with set guidelines. Preliminary identification of 40 randomly selected presumptive enterohemorrhagic E. coli isolates by Gram’s staining and oxidase test shows 100% (all 40 selected isolates) to be Gram positive while 90% (36 randomly selected isolates) were oxidase negative. Statistical correlation between the physicochemical and the microbiological parameters were generally weak except in the case of free chlorine and DO where they showed inverse correlation with the microbiological parameters. The recovery of EHEC showed the inefficiency of the treatment processes to effectively inactivate the bacteria, and possibly other pathogenic bacteria that may be present in the treated wastewater. The assessment suggested the need for proper monitoring and a review of the treatment procedures used at these treatment works.
- Full Text:
- Date Issued: 2014
- Authors: Ajibade, Adefisoye Martins
- Date: 2014
- Subjects: Sewage disposal plants , Escherichia coli -- South Africa -- Eastern Cape , Escherichia coli O157:H7 , Escherichia coli , Effluent quality -- Testing , Whole effluent toxicity testing , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11283 , http://hdl.handle.net/10353/d1016166 , Sewage disposal plants , Escherichia coli -- South Africa -- Eastern Cape , Escherichia coli O157:H7 , Escherichia coli , Effluent quality -- Testing , Whole effluent toxicity testing , Water -- Purification
- Description: The production of final effluents that meet discharged requirements and guidelines remain a major challenge particularly in the developing world with the resultant problem of surface water pollution. This study assessed the physicochemical and microbiological qualities of two wastewater treatment works in the Eastern Cape Province of South Africa in terms of the prevalence of faecal coliforms and Escherichia coli O157:H7 over a five month period. All physicochemical and microbiological analyses were carried out using standard methods. Data were collected in triplicates and analysed statistically using IBM SPSS version 20.0. The ranges of some of the physicochemical parameters that complied with set guidelines include pH (6.7 – 7.6), TDS (107 – 171 mg/L), EC (168 – 266 μS/cm), Temperature (15 – 24oC), NO3- (0 – 8.2 mg/L), NO2- (0.14 – 0.71 mg/L) and PO4 (1.05 – 4.50 mg/L). Others including Turbidity (2.64 – 58.00 NTU), Free Cl (0.13 – 0.65 mg/L), DO (2.20 – 8.48 mg/L), BOD (0.13 – 6.85 mg/L) and COD (40 – 482 mg/L) did not comply with set guidelines. The microbiological parameters ranged 0 – 2.7 × 104 CFU/100 ml for FC and 0 – 9.3 × 103 for EHEC CFU/100 ml, an indication of non-compliance with set guidelines. Preliminary identification of 40 randomly selected presumptive enterohemorrhagic E. coli isolates by Gram’s staining and oxidase test shows 100% (all 40 selected isolates) to be Gram positive while 90% (36 randomly selected isolates) were oxidase negative. Statistical correlation between the physicochemical and the microbiological parameters were generally weak except in the case of free chlorine and DO where they showed inverse correlation with the microbiological parameters. The recovery of EHEC showed the inefficiency of the treatment processes to effectively inactivate the bacteria, and possibly other pathogenic bacteria that may be present in the treated wastewater. The assessment suggested the need for proper monitoring and a review of the treatment procedures used at these treatment works.
- Full Text:
- Date Issued: 2014
Exploring the fertiliser potential of biosolids from algae integrated wastewater treatment systems
- Authors: Mlambo, Patricia Zanele
- Date: 2014
- Subjects: Sewage disposal plants , Sewage sludge as fertilizer , Algae -- Biotechnology , Sewage -- Purification -- Anaerobic treatment , Plant regulators , Biofertilizers , Microalgae -- Biotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5957 , http://hdl.handle.net/10962/d1013342
- Description: High rate algae oxidation ponds (HRAOP) for domestic wastewater treatment generate biosolids that are predominantly microalgae. Consequently, HRAOP biosolids are enriched with minerals, amino acids, nutrients and possibly contain plant growth regulator (PGR)-like substances, which makes HRAOP biosolids attractive as fertiliser or PGR. This study investigated HRAOP biosolids as a starting material for a natural, cost-effective and readily-available eco-friendly organic fertiliser and/or PGRs. Various HRAOP extract formulations were prepared and their effect on plant growth and development was evaluated using selected bioassays. Initial screening included assessing the effect on change in specific leaf area, radish cotyledon expansion as an indicator of PGR-like activity, and seed germination index (GI). More detailed studies on fertiliser efficacy and PGR-like activity utilised bean (Phaseolus vulgaris) and tomato (Solanum lycopersicum) plants. Combined effects of sonicated (S) and 40% v/v methanol (M) extract (5:1 SM) had impressive plant responses, comparable to Hoagland solution (HS). Other potentially fertiliser formulations included 0.5% M, 1% M, 2.5% S and 5% S formulations. The 5:1 SM and 5% S showed greater PGR-like activity, promoting cotyledon expansion by 459 ± 0.02% and 362 ± 0.01%, respectively. GI data showed that none of the formulations negatively impacted germination. Further investigation showed that the 5% S formulation increased leaf length, width and area by 6.69 ± 0.24, 6.21 ± 0.2 mm and 41.55 ± 0.2 mm². All formulated fertiliser extracts had no adverse effect on chlorophyll content and plant nutrient balance as indicated by C:N (8-10:1) ratio. In addition, plants appeared to actively mobilise nutrients to regions where needed as evidenced by a shift in shoot: root ratio depending on C, N and water availability. Furthermore, 5% S caused a 75% increase in tomato productivity and had no effect on bean productivity. Whereas, 5:1 SM and 1% M formulation improved bean pod production by 33.3% and 11%, respectively but did not affect tomato production. Harvest index (HI) however indicated a 3% reduction in tomato productivity with 5:1 SM and little or no enhancement in bean productivity with both 5:1 SM and 5% S treatments. Bean plants treated with 5:1 SM and 5% S produced larger fruits, which could be an indication of the presence of a PGR effect. Overall, HRAOP biosolids extracts prepared and investigated in this study demonstrated both fertiliser characteristics and PGR-like activity with performances comparable and in some cases exceeding that of commercial products. However additional research is needed to confirm presence of PGR-like activities and fertiliser efficacy.
- Full Text:
- Date Issued: 2014
- Authors: Mlambo, Patricia Zanele
- Date: 2014
- Subjects: Sewage disposal plants , Sewage sludge as fertilizer , Algae -- Biotechnology , Sewage -- Purification -- Anaerobic treatment , Plant regulators , Biofertilizers , Microalgae -- Biotechnology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5957 , http://hdl.handle.net/10962/d1013342
- Description: High rate algae oxidation ponds (HRAOP) for domestic wastewater treatment generate biosolids that are predominantly microalgae. Consequently, HRAOP biosolids are enriched with minerals, amino acids, nutrients and possibly contain plant growth regulator (PGR)-like substances, which makes HRAOP biosolids attractive as fertiliser or PGR. This study investigated HRAOP biosolids as a starting material for a natural, cost-effective and readily-available eco-friendly organic fertiliser and/or PGRs. Various HRAOP extract formulations were prepared and their effect on plant growth and development was evaluated using selected bioassays. Initial screening included assessing the effect on change in specific leaf area, radish cotyledon expansion as an indicator of PGR-like activity, and seed germination index (GI). More detailed studies on fertiliser efficacy and PGR-like activity utilised bean (Phaseolus vulgaris) and tomato (Solanum lycopersicum) plants. Combined effects of sonicated (S) and 40% v/v methanol (M) extract (5:1 SM) had impressive plant responses, comparable to Hoagland solution (HS). Other potentially fertiliser formulations included 0.5% M, 1% M, 2.5% S and 5% S formulations. The 5:1 SM and 5% S showed greater PGR-like activity, promoting cotyledon expansion by 459 ± 0.02% and 362 ± 0.01%, respectively. GI data showed that none of the formulations negatively impacted germination. Further investigation showed that the 5% S formulation increased leaf length, width and area by 6.69 ± 0.24, 6.21 ± 0.2 mm and 41.55 ± 0.2 mm². All formulated fertiliser extracts had no adverse effect on chlorophyll content and plant nutrient balance as indicated by C:N (8-10:1) ratio. In addition, plants appeared to actively mobilise nutrients to regions where needed as evidenced by a shift in shoot: root ratio depending on C, N and water availability. Furthermore, 5% S caused a 75% increase in tomato productivity and had no effect on bean productivity. Whereas, 5:1 SM and 1% M formulation improved bean pod production by 33.3% and 11%, respectively but did not affect tomato production. Harvest index (HI) however indicated a 3% reduction in tomato productivity with 5:1 SM and little or no enhancement in bean productivity with both 5:1 SM and 5% S treatments. Bean plants treated with 5:1 SM and 5% S produced larger fruits, which could be an indication of the presence of a PGR effect. Overall, HRAOP biosolids extracts prepared and investigated in this study demonstrated both fertiliser characteristics and PGR-like activity with performances comparable and in some cases exceeding that of commercial products. However additional research is needed to confirm presence of PGR-like activities and fertiliser efficacy.
- Full Text:
- Date Issued: 2014
Assessment of the prevalence of virulent Eschericia coli strains in the final effluents of wastewater treatment plants in the Eastern Cape Province of South Africa
- Authors: Osode, Augustina Nwabuje
- Date: 2010
- Subjects: Escherichia coli , Escherichia coli -- Genetics , Effluent quality -- Testing , Water -- Purification , Sewage disposal plants , Escherichia coli -- South Africa -- Eastern Cape , Whole effluent toxicity testing
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11246 , http://hdl.handle.net/10353/d1001062 , Escherichia coli , Escherichia coli -- Genetics , Effluent quality -- Testing , Water -- Purification , Sewage disposal plants , Escherichia coli -- South Africa -- Eastern Cape , Whole effluent toxicity testing
- Description: Escherichia coli (E. coli) is a common inhabitant of surface waters in the developed and developing worlds. The majority of E. coli cells present in water are not particularly pathogenic to humans; however, there are some present in small proportion that possess virulence genes that allow them to colonize the digestive tract. Pathogenic E. coli causes acute and chronic diarrheal diseases, especially among children in developing countries and in travelers in these locales. The present study, conducted between August 2007 and July 2008, investigated the prevalence and distribution of virulent E. coli strains as either free or attached cells in the final effluents of three wastewater treatment plants located in the Eastern Cape Province of South Africa and its impact on the physico-chemical quality of the receiving water body. The wastewater treatment plants are located in urban (East Bank Reclamation Works, East London), peri-urban (Dimbaza Sewage Treatment Works) and in rural area (Alice Sewage Treatment Works). The effluent quality of the treatment plants were acceptable with respect to pH (6.9-7.8), temperature (13.8-22.0 °C), dissolved oxygen (DO) (4.9-7.8 mg/L), salinity (0.12-0.17 psu), total dissolved solids (TDS) (119-162 mg/ L) and nitrite concentration (0.1-0.4 mg/l). The other xii physicochemical parameters that did not comply with regulated standards include the following: phosphate (0.1-4.0 mg/L); chemical oxygen demand (COD) (5-211 mg/L); electrical conductivity (EC) (237-325 μS/cm) and Turbidity (7.7-62.7 NTU). Results suggest that eutrophication is intensified in the vicinity of the effluent discharge points, where phosphate and nitrate were found in high concentrations. Presumptive E. coli was isolated from the effluent samples by culture-based methods and confirmed using Polymerase Chain Reaction (PCR) techniques. Antibiogram assay was also carried out using standard in vitro methods on Mueller Hinton agar. The viable counts of presumptive E. coli for the effluent samples associated with 180 μm plankton size ranged between 0 – 4.30 × 101 cfu/ml in Dimbaza, 0 – 3.88 × 101 cfu/ml in Alice and 0 – 8.00 × 101 cfu/ml in East London. In the 60 μm plankton size category E. coli densities ranged between 0 and 4.2 × 101 cfu/ml in Dimbaza, 0 and 2.13 × 101 cfu/ml in Alice and 0 and 8.75 × 101 cfu/ml in East London. Whereas in the 20 μm plankton size category presumptive E. coli density varied from 0 to 5.0 × 101 cfu/ml in Dimbaza, 0 to 3.75 × 101 cfu/ml in Alice and 0 to 9.0 × 101 cfu/ml in East London. The free-living presumptive E. coli density ranged between 0 and 3.13 × 101 cfu/ml in Dimbaza, between 0 and 8.0 × 101 cfu/ml in Alice and between 0 and 9.5 × 101 cfu/ml in East London. Molecular analysis successfully amplified target genes (fliCH7, rfbEO157, ial and aap) which are characteristic of pathogenic E. coli strains. The PCR assays using uidA-specific primer confirmed that a genetic region homologous in size to the E. coli uidA structural gene, including the regulatory region, was present in 3 of the E. coli isolates from Alice, 10 from Dimbaza and 8 from East London. Of the 3 E. coli isolates from Alice, 1 (33.3%) was positive for the fliCH7 genes and 3 was positive for rfbEO157 genes. Out of the 10 isolates from Dimbaza, 4 were xiii positive for fliCH7 genes, 6 were positive for the rfbEO157 genes and 1 was positive for the aap genes; and of the 8 isolates from East London, 1 was positive for fliCH7 genes, 2 were for the rfbEO157 genes, 6 were positive for the ial genes. Antimicrobial susceptibility profile revealed that all of the E. coli strains isolated from the effluent water samples were resistant (R) to linezolid, polymyxin B, penicillin G and sulfamethoxazole. The E. coli isolates from Dimbaza (9/10) and East London (8/8) respectively were resistant to erythromycin. All the isolates were found to be susceptible (S) to amikacin, ceftazidime, ciprofloxacin, colistin sulphate, ceftriaxone, cefotaxime, cefuroxime, ertapenem, gatifloxacin, gentamycin, imidazole, kanamycin, meropenem, moxifloxacin, neomycin, netilmicin, norfloxacin and tobramycin. The findings of this study revealed that the Alice wastewater treatment plant was the most efficient as it produced the final effluent with the least pathogenic E. coli followed by the Dimbaza wastewater treatment plant. In addition, the findings showed that the wastewater treatment plant effluents are a veritable source of pathogenic E. coli in the Eastern Cape Province watershed. We suggest that to maximize public health protection, treated wastewater effluent quality should be diligently monitored pursuant to ensuring high quality of final effluents.
- Full Text:
- Date Issued: 2010
- Authors: Osode, Augustina Nwabuje
- Date: 2010
- Subjects: Escherichia coli , Escherichia coli -- Genetics , Effluent quality -- Testing , Water -- Purification , Sewage disposal plants , Escherichia coli -- South Africa -- Eastern Cape , Whole effluent toxicity testing
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11246 , http://hdl.handle.net/10353/d1001062 , Escherichia coli , Escherichia coli -- Genetics , Effluent quality -- Testing , Water -- Purification , Sewage disposal plants , Escherichia coli -- South Africa -- Eastern Cape , Whole effluent toxicity testing
- Description: Escherichia coli (E. coli) is a common inhabitant of surface waters in the developed and developing worlds. The majority of E. coli cells present in water are not particularly pathogenic to humans; however, there are some present in small proportion that possess virulence genes that allow them to colonize the digestive tract. Pathogenic E. coli causes acute and chronic diarrheal diseases, especially among children in developing countries and in travelers in these locales. The present study, conducted between August 2007 and July 2008, investigated the prevalence and distribution of virulent E. coli strains as either free or attached cells in the final effluents of three wastewater treatment plants located in the Eastern Cape Province of South Africa and its impact on the physico-chemical quality of the receiving water body. The wastewater treatment plants are located in urban (East Bank Reclamation Works, East London), peri-urban (Dimbaza Sewage Treatment Works) and in rural area (Alice Sewage Treatment Works). The effluent quality of the treatment plants were acceptable with respect to pH (6.9-7.8), temperature (13.8-22.0 °C), dissolved oxygen (DO) (4.9-7.8 mg/L), salinity (0.12-0.17 psu), total dissolved solids (TDS) (119-162 mg/ L) and nitrite concentration (0.1-0.4 mg/l). The other xii physicochemical parameters that did not comply with regulated standards include the following: phosphate (0.1-4.0 mg/L); chemical oxygen demand (COD) (5-211 mg/L); electrical conductivity (EC) (237-325 μS/cm) and Turbidity (7.7-62.7 NTU). Results suggest that eutrophication is intensified in the vicinity of the effluent discharge points, where phosphate and nitrate were found in high concentrations. Presumptive E. coli was isolated from the effluent samples by culture-based methods and confirmed using Polymerase Chain Reaction (PCR) techniques. Antibiogram assay was also carried out using standard in vitro methods on Mueller Hinton agar. The viable counts of presumptive E. coli for the effluent samples associated with 180 μm plankton size ranged between 0 – 4.30 × 101 cfu/ml in Dimbaza, 0 – 3.88 × 101 cfu/ml in Alice and 0 – 8.00 × 101 cfu/ml in East London. In the 60 μm plankton size category E. coli densities ranged between 0 and 4.2 × 101 cfu/ml in Dimbaza, 0 and 2.13 × 101 cfu/ml in Alice and 0 and 8.75 × 101 cfu/ml in East London. Whereas in the 20 μm plankton size category presumptive E. coli density varied from 0 to 5.0 × 101 cfu/ml in Dimbaza, 0 to 3.75 × 101 cfu/ml in Alice and 0 to 9.0 × 101 cfu/ml in East London. The free-living presumptive E. coli density ranged between 0 and 3.13 × 101 cfu/ml in Dimbaza, between 0 and 8.0 × 101 cfu/ml in Alice and between 0 and 9.5 × 101 cfu/ml in East London. Molecular analysis successfully amplified target genes (fliCH7, rfbEO157, ial and aap) which are characteristic of pathogenic E. coli strains. The PCR assays using uidA-specific primer confirmed that a genetic region homologous in size to the E. coli uidA structural gene, including the regulatory region, was present in 3 of the E. coli isolates from Alice, 10 from Dimbaza and 8 from East London. Of the 3 E. coli isolates from Alice, 1 (33.3%) was positive for the fliCH7 genes and 3 was positive for rfbEO157 genes. Out of the 10 isolates from Dimbaza, 4 were xiii positive for fliCH7 genes, 6 were positive for the rfbEO157 genes and 1 was positive for the aap genes; and of the 8 isolates from East London, 1 was positive for fliCH7 genes, 2 were for the rfbEO157 genes, 6 were positive for the ial genes. Antimicrobial susceptibility profile revealed that all of the E. coli strains isolated from the effluent water samples were resistant (R) to linezolid, polymyxin B, penicillin G and sulfamethoxazole. The E. coli isolates from Dimbaza (9/10) and East London (8/8) respectively were resistant to erythromycin. All the isolates were found to be susceptible (S) to amikacin, ceftazidime, ciprofloxacin, colistin sulphate, ceftriaxone, cefotaxime, cefuroxime, ertapenem, gatifloxacin, gentamycin, imidazole, kanamycin, meropenem, moxifloxacin, neomycin, netilmicin, norfloxacin and tobramycin. The findings of this study revealed that the Alice wastewater treatment plant was the most efficient as it produced the final effluent with the least pathogenic E. coli followed by the Dimbaza wastewater treatment plant. In addition, the findings showed that the wastewater treatment plant effluents are a veritable source of pathogenic E. coli in the Eastern Cape Province watershed. We suggest that to maximize public health protection, treated wastewater effluent quality should be diligently monitored pursuant to ensuring high quality of final effluents.
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »