Evaluation of functionalized silver and silica nanoparticles for the removal of deoxyribonucleic acid conveying antibiotics resistance genes from water
- Authors: Ezeuko, Adaora Stella
- Date: 2022
- Subjects: DNA , Silica , Water
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/27765 , vital:69414
- Description: Antibiotic resistance genes ARGs are recognized as a serious public health emergency linked to extensive use of antibiotics by humans and animals as a prophylactic agent that treats and prevents infections. The occurrence of high concentrations being identified in wastewater treatment plants, rivers, etc is due to untreated effluents being discharged from households, hospitals, agriculture, and pharmaceutical industries. The application of adequate treatment techniques and material for the removal of bacteria DNA conveying ARGs from the effluents before their release to the environment cannot be overemphasized. Adsorption techniques seem to be effective due to their easy design, operation, and ability to regenerate adsorbents for use without producing toxic by-products. This concept was employed for the removal of bacteria DNA conveying ARGs from simulated aqueous solution, effluents from hospital, river and WWTPs using silver and silica metallic nanoparticles. This thesis investigated the effectiveness of metallic nanoparticles containing silver AgNPs and mesoporous silica nanoparticles MSNPs as well as magnetite Fe3O4 functionalized with 4 4hydroxyphenyl 2 262-terpyridine onto their surface, for the removal of bacteria DNA conveying antibiotic resistance genes from water samples from hospitals, river, and wastewater treatment plants WWTPs. Silver nanoparticles AgNPs of different molar concentrations 0.1M, 0.5M and 1.0 M and mesoporous silica nanoparticles MSNPs adsorbents were successfully synthesized in their original states and surface functionalization achieved by incorporating magnetite Fe3O4 and 4 4 hydroxyphenyl 2 2 6 2 terpyridine on the silver AgNPs Fe3O4 and silica MSNPs TPPY surfaces respectively. Their effectiveness as adsorbent for the removal of bacteria DNA conveying ARGs from aqueous solutions and real water/wastewater samples were investigated. The DNA uptake by the as-synthesized AgNPs and MSNPs were compared to the functionalized AgNPs Fe3O4 and MSNPsTPPY by determining the adsorbents with the highest removal efficiencies. All as synthesized and functionalized adsorbents were characterized by SEM, EDX, FTIR, XRD, UV spectroscopy and PZC before the removal process. The extraction of genomic DNA from antibiotic-resistant Enterococcus faecium and Vibrio parahaemolyticus was successfully achieved via the boiling method. Antibiotic susceptibility test was conducted using the disk diffusion method before the commencement of genomic DNA extraction. Molecular characterization via gel electrophoresis confirmed the presence of resistance genes at different base pairs. Adsorption batch experiment were investigated, and the best optimum parameters were evaluated through the influence of pH, contact time, initial DNA concentration, adsorbent dose, and competitive ions for each sorption process. The rate determining step were determined by fitting kinetic models such as Natarajan and Khalaf first order, pseudo first order, pseudo second order, Elovich model to experimental data. Also, the adsorption mechanisms determining adsorption equilibrium were investigated by fitting Freundlich, Langmuir and Sips model into the experimental data. The application of AgNPsFe3O4 nanocomposite and MSNPsTPPY for the removal of bacteria DNA demonstrated much enhancement for DNA uptake than the as-synthesized AgNPs and MSNPs materials. The incorporation of magnetite and 4 4hydroxyphenyl 2 2 6 2-terpyridine onto AgNPs and MSNPs significantly enhanced the binding affinity towards the removal the bacteria DNA via strong electrostatic attraction between the active sites on the adsorbent and the negative DNA molecules. Finally, high adsorption capacities were recorded with AgNPsFe3O4 nanocomposite and MSNPsTPPY compared to AgNPs and MSNPs with chaotropic salts. The kinetic adsorption models were mostly best fitted by the pseudo-second order and Elovich models while the adsorption equilibrium was best described by Langmuir and Sips isotherm models. MSNPs with different chaotropic salts, AgNPsFe3O4 nanocomposite and MSNPsTPPY also proved its effectiveness in DNA removal not only in the simulated aqueous solution but in three different real life water samples obtained from Cofimvaba hospital, Ndevana river and Uitenhage WWTPs. High adsorption efficiencies above 90 percent were achieved during the removal of DNA in all the three real water samples. Therefore, application of these adsorbents for the removal of bacteria DNA conveying ARGs may be a promising option that would tackle the consequences of consuming ARGs infected water globally. , Thesis (MSc) -- Faculty of Science and Agriculture, 2022
- Full Text:
- Date Issued: 2022
Syntheses and photophysico-chemical properties of phthalocyanines in the presence of silica nanoparticles
- Authors: Peteni, Siwaphiwe
- Date: 2019
- Subjects: Phthalocyanines , Silica , Nanoparticles , Bioconjugates
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67592 , vital:29118
- Description: This thesis reports on the syntheses and characterizationof symmetrical (charged and neutral), asymmetrical (neutral) metallophthalocyanines (MPcs) and subphthalocyanines (SubPcs). The charged and neutral Pcs were physically doped onto silica nanoparticles (SiNPs). The asymmetrical MPc was also chemically linked to SiNPs. Spectroscopic and microscopic techniques were used to confirm the formation of SiNPs-MPc conjugates. The photophysics and photochemistry of the MPcs were assessed when alone and in conjugates (with SiNPs). The studies showed no significant changes in fluorescence quantum yields (ϕF) and fluorescence lifetimes (ϕF) of MPcs following doping except for 2-SiNPs (2 = Zn tetraaminophenoxyphthalocyanines) and 6-SiNPs (doped) (6 = Zn tris[(4-(pyridine-4-ylthio)2-thio-4-methylthiazol-5yl) acetic acid phthalocyanine) where there was a decrease in the ϕF value. Also for 1-SiNPs (1 = unsubstituted ZnPc) there was an elongation in τF which could be due to the protection offered by SiNPs. Both charged/neutral MPcs displayed high triplet quantum yields (ϕT) and singlet quantum yields (ϕΔ) following doping except for 2-SiNPs where there was a decrease in the latter. For 1-SiNPs there was an increase in ϕT but a decrease inϕΔ .There wasa decrease in ϕT and an increase in ϕΔfor4-SiNPs (4 = Zn tetrasulfophenoxyphthalocyanine), the decrease in ϕT could be due to the orientation of theMPc in SiNPs. An increase in both ϕT and ϕΔ for 6-SiNPs (linked) compared to 6-SiNPs (doped) was observed. Complex 5 (5 = Zn tetra-kis-(dodecylmercapto) phthalocyanine) showed a low ϕΔ value.
- Full Text:
- Date Issued: 2019
Synthesis of pH responsive carriers for pulmonary drug delivery of anti-tuberculosis therapeutics: mesoporous silica nanoparticles and gelatin nanoparticles
- Authors: Ngoepe, Mpho Phehello
- Date: 2019
- Subjects: Drug delivery systems , Pulmonary pharmacology , Nanosilicon , Nanomedicine , Nanoparticles , Mesoporous materials , Silica , Tuberculosis -- Treatment
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76519 , vital:30590
- Description: Pulmonary drug delivery has historically been used as a route for delivery of therapeutics for respiratory disease management. However, while there are many advantages, there are also some serious limitations, arising mostly from the physical aspects of the inhaler devices. This is more profound when the devices are the driving force for controlling particle size generation, which results in non-uniform particles that end up being swallowed/wasted/expelled. One promising solution to overcome this limitation is to pre-formulate nano/microscale particles with a high degree of manufacturing control. Nanomedicine has advanced such that there are already several nanoparticle formulations commercially available. In the case of tuberculosis treatment, there is an opportunity not only to examine the use of nanoparticles for inhalation therapy, but to take advantage of the fact that the physiochemical environment of diseased tissue is significantly different to health lung tissue (lower pH and increased enzyme concentrations). We formulated two series of nanoparticles, whose design included moieties that could respond to pH and enzymes. To address variability, a Box-Behnken statistical approach was followed to construct mesoporous silica nanoparticles. These “hard nanoparticles” can entrap both lipophilic and hydrophilic drugs and were coated with a pH-sensitive hydrazone linker. It was observed that pH, calcination temperature and ratio of water to silica source played the greatest role, not only in controlling the physicochemical properties of the nanoparticles but also the drug release rate. A second series of nanoparticles were synthesized based on gelatin. This was done partly to add support the comparison of hard (inorganic silica) versus soft, organic particles, but also to enable enzymatic degradation and drug release. Again, diseased lung tissue expresses increased concentrations of gelatinase enzymes that could be used to stimulate drug release at the site of the disease. In addition, it was observed that the non-ionic surfactant C12E10 could interact with the protein via hydrophobic interactions thus affecting the gelatin folding. The folding states affected crosslinking with the pH responsive linker, which in turn affected the rate of drug release. To support the synthetic work, we sought to develop a unique 3D lung model directly from MRI data of tuberculosis infected lungs. This would not only permit the evaluation of our nanoparticles but could be used as a proxy for in-vivo studies in future to predict lung deposition in diseased lung. Thus, this study shows that it is possible to synthesize pH and enzyme sensitive nanoparticles for pulmonary drug delivery in the treatment and management of pulmonary tuberculosis. These particles could be loaded with either hydrophobic or hydrophilic drugs and their distribution in the airway modelled using an in-silico 3D model based on real data. Further development and verification of these results should improve treatment for pulmonary diseases and conditions such as tuberculosis. This is especially urgent in the face of multi-drug resistance and poor side effects profiles for current treatment.
- Full Text:
- Date Issued: 2019
Photophysical studies of Zinc phthalocyanine-silica nanoparticles conjugates
- Authors: Fashina, Adedayo
- Date: 2015
- Subjects: Nanoparticles , Phthalocyanines , Zinc , Silica , Photochemistry , Adsorption
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4537 , http://hdl.handle.net/10962/d1017917
- Description: This thesis reports on the synthesis and characterization of both symmetrical and asymmetrical Zinc phthalocyanine complexes. The complexes contained groups such as carboxylic, amino and alkyne for covalent grafting to the surface of silica nanoparticles. The use of symmetrical and asymmetrical complexes was geared towards comparing the non-specific binding of the symmetrical complexes to the specific binding observed in the asymmetrical complexes. The complexes were also doped within the silica matrix and compared to the surface grafted conjugates. The complexes and the conjugates were well characterized with a variety of techniques. The fluorescence lifetimes of the phthalocyanine complexes containing either terminal carboxylic groups or an alkyne group showed a mono-exponential decay while the amino containing phthalocyanine complexes gave a bi-exponential decay. A similar trend was observed for their respective conjugates. Some of the conjugates of the asymmetrical complexes showed a decrease in fluorescence lifetimes and a corresponding decrease in fluorescence quantum yields. The fluorescence quantum yields for all the symmetrical complexes studied showed either an improvement or retained the luminescence of the grafted phthalocyanine complex. Most of the conjugates showed a faster intersystem crossing time in comparison to the complexes alone. The grafted or doped conjugates containing symmetrical phthalocyanine complexes with carboxyl groups showed improvements both in fluorescence and triplet quantum yields. All the conjugates except two showed an increase in triplet lifetimes when compared to their respective phthalocyanine complexes. Optical nonlinearities of nine of the phthalocyanine complexes were studied and all the complexes showed characteristic reverse saturable absorption behavior. Complex 10 showed the most promising optical limiting behavior. The aggregation and dissolution studies of the conjugates were also carried out in a simulated biological medium and the silicon level detected was noticed to have increased with incubation time.
- Full Text:
- Date Issued: 2015
Development of a visible light active, photo-catalytic and antimicrobial nanocomposite of titanium dioxide and silicon dioxide for water treatment
- Authors: Mungondori, Henry Heroe
- Date: 2012
- Subjects: Titanium dioxide , Silica , Catalysis , Nanocomposites (Materials) , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11335 , http://hdl.handle.net/10353/471 , Titanium dioxide , Silica , Catalysis , Nanocomposites (Materials) , Water -- Purification
- Description: The aim of this study was to prepare composite materials based on titanium dioxide (TiO2) and silicon dioxide (SiO2), and to evaluate their photo-catalytic and antimicrobial properties. Carbon and nitrogen doped TiO2nano-particles were prepared via a sol gel synthesis, which is a simple hydrolysis and condensation technique. In situ doping was carried out using glucose and urea as carbon and nitrogen sources respectively. Doping increased the spectral response of titanium dioxide photo-catalyst, allowing it to utilise the visible region which is much wider than the UV region (about 40 % of the solar spectrum), thus making it a more efficient photo-catalyst. The carbon and nitrogen doped TiO2-SiO2nano-particles were immobilized on glass support material to allow for easy separation of the spent photo-catalyst after the photo-degradation process. Tetraethyl orthosilicate (TEOS) was employed as both a binder and precursor for silicon dioxide. A mixture of TiO2 and TEOS in a 1:1 ratio was allowed to polymerize on a glass support which had been treated with hydrofluoric acid to introduce OH groups. The prepared photo-catalytic material was characterized by FT-IR, XRD, DRS, TEM, EDX, and BET analyses. Carbon was found to be more effective as a dopant than nitrogen. It brought about a band gap reduction of 0.30 eV and a BET surface area of 95.4 m2g-1 on the photo-catalyst as compared to a gap reduction of 0.2 eV and surface area of 52.2 m2g-1 for nitrogen doped TiO2. On the other hand, introduction of SiO2 allowed utilization of visible light by the TiO2-SiO2 nano-composite leading to an improved rate of photo-degradation of both methyl orange and phenol red. However, the immobilization of TiO2 on support material made it less effective towards inactivation of E. coli ATCC 25922 bacterial cells when compared to powdered TiO2 which was able to inactivate about 98 % of the bacterial cells within an hour of treatment.
- Full Text:
- Date Issued: 2012