Do thermal requirements of Dichrorampha odorata, a shoot-boring moth for the biological control of Chromolaena odorata, explain its failure to establish in South Africa?
- Nqayi, Slindile B, Zachariades, Costas, Coetzee, Julie A, Hill, Martin P, Chidawanyika, Frank, Uyi, Osariyekemwen O, McConnachie, Andrew J
- Authors: Nqayi, Slindile B , Zachariades, Costas , Coetzee, Julie A , Hill, Martin P , Chidawanyika, Frank , Uyi, Osariyekemwen O , McConnachie, Andrew J
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416851 , vital:71391 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a14"
- Description: Chromolaena odorata (L.) RM King and H Rob. (Asteraceae) has been subject to a biological control programme in South Africa for over three decades. A shoot-tip boring moth, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), originating from Jamaica, was released as a biological control agent in 2013 but despite the release of substantial numbers of the insect, it has not established a permanent field population. Because climate incompatibility is a major constraint for classical biological control of invasive plants, and based on the differences in climate between Jamaica and South Africa and field observations at release sites, aspects of the thermal physiology of D. odorata were investigated to elucidate reasons for its failure to establish. Developmental time decreased with increasing temperatures ranging from 20 °C to 30 °C, with incomplete development for immature stages at 18 °C and 32 °C. The developmental threshold, t, was calculated as 8.45 °C with 872.4 degree-days required to complete development (K). A maximum of 6.5 generations per year was projected for D. odorata in South Africa, with the heavily infested eastern region of the country being the most eco-climatically suitable for establishment. The lower lethal temperature (LLT50) of larvae and adults was –4.5 and 1.8 °C, respectively. The upper lethal temperature (ULT50) for larvae was 39.6 °C whilst that of adults was 41.0 °C. Larvae thus had better cold tolerance compared to adults whereas adults had better heat tolerance compared to larvae. The critical thermal (CT) limits for adults were 3.4 ± 0.07 to 43.7 ± 0.12 °C. Acclimation at 20 °C for 7 days resulted in increased cold and heat tolerance with a CTmin and CTmax of 1.9 ± 0.06 and 44.4 ± 0.07 °C respectively, compared to the relative control, acclimated at 25 °C. Acclimation at 30 °C improved neither cold (CTmin: 5.9 ± 0.08 °C) nor heat tolerance (CTmax: 42.9 ± 0.10 °C). These results suggest that thermal requirements fall within field temperatures and are thus not the main constraining factor leading to poor establishment of D. odorata in South Africa.
- Full Text:
- Date Issued: 2023
- Authors: Nqayi, Slindile B , Zachariades, Costas , Coetzee, Julie A , Hill, Martin P , Chidawanyika, Frank , Uyi, Osariyekemwen O , McConnachie, Andrew J
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416851 , vital:71391 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a14"
- Description: Chromolaena odorata (L.) RM King and H Rob. (Asteraceae) has been subject to a biological control programme in South Africa for over three decades. A shoot-tip boring moth, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), originating from Jamaica, was released as a biological control agent in 2013 but despite the release of substantial numbers of the insect, it has not established a permanent field population. Because climate incompatibility is a major constraint for classical biological control of invasive plants, and based on the differences in climate between Jamaica and South Africa and field observations at release sites, aspects of the thermal physiology of D. odorata were investigated to elucidate reasons for its failure to establish. Developmental time decreased with increasing temperatures ranging from 20 °C to 30 °C, with incomplete development for immature stages at 18 °C and 32 °C. The developmental threshold, t, was calculated as 8.45 °C with 872.4 degree-days required to complete development (K). A maximum of 6.5 generations per year was projected for D. odorata in South Africa, with the heavily infested eastern region of the country being the most eco-climatically suitable for establishment. The lower lethal temperature (LLT50) of larvae and adults was –4.5 and 1.8 °C, respectively. The upper lethal temperature (ULT50) for larvae was 39.6 °C whilst that of adults was 41.0 °C. Larvae thus had better cold tolerance compared to adults whereas adults had better heat tolerance compared to larvae. The critical thermal (CT) limits for adults were 3.4 ± 0.07 to 43.7 ± 0.12 °C. Acclimation at 20 °C for 7 days resulted in increased cold and heat tolerance with a CTmin and CTmax of 1.9 ± 0.06 and 44.4 ± 0.07 °C respectively, compared to the relative control, acclimated at 25 °C. Acclimation at 30 °C improved neither cold (CTmin: 5.9 ± 0.08 °C) nor heat tolerance (CTmax: 42.9 ± 0.10 °C). These results suggest that thermal requirements fall within field temperatures and are thus not the main constraining factor leading to poor establishment of D. odorata in South Africa.
- Full Text:
- Date Issued: 2023
Three new biological control programmes for South Africa: Brazilian pepper, Tamarix and Tradescantia
- Byrne, Marcus J, Mayonde, Samalesu, Venter, Nic, Chidawanyika, Frank, Zachariades, Costas, Martin, Grant D
- Authors: Byrne, Marcus J , Mayonde, Samalesu , Venter, Nic , Chidawanyika, Frank , Zachariades, Costas , Martin, Grant D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414490 , vital:71152 , xlink:href="https://hdl.handle.net/10520/ejc-cristal-v10-n1-a7"
- Description: Three weed biological control (biocontrol) programmes are described, all of which are considered to be ‘transfer projects’ that were initiated elsewhere, and on which South Africa has piggybacked its biocontrol efforts. Using knowledge and expertise from international collaborators, South African weed researchers are following a long tradition of transfer projects, which has been a largely successful and practical approach to biocontrol. Two Brazilian weeds, the Brazilian pepper tree Schinus terebinthifolia and the spiderwort Tradescantia fluminensis are being targeted, along with the Old-World trees Tamarix ramosissima and T. chinensis. The potential biocontrol agents are described and ranked for the two trees according to what has been discovered elsewhere, while the agent already released against T. fluminensis is rated (as poor), and other potential agents are considered. The addition of molecular techniques, climate matching and remote sensing in transfer projects can increase the chance of successful biocontrol and the inclusion of these techniques in the three new programmes is discussed. Transfer projects are a cost-effective and pragmatic way to pick winning biocontrol programmes.
- Full Text:
- Date Issued: 2021
Three new biological control programmes for South Africa: Brazilian pepper, Tamarix and Tradescantia
- Authors: Byrne, Marcus J , Mayonde, Samalesu , Venter, Nic , Chidawanyika, Frank , Zachariades, Costas , Martin, Grant D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414490 , vital:71152 , xlink:href="https://hdl.handle.net/10520/ejc-cristal-v10-n1-a7"
- Description: Three weed biological control (biocontrol) programmes are described, all of which are considered to be ‘transfer projects’ that were initiated elsewhere, and on which South Africa has piggybacked its biocontrol efforts. Using knowledge and expertise from international collaborators, South African weed researchers are following a long tradition of transfer projects, which has been a largely successful and practical approach to biocontrol. Two Brazilian weeds, the Brazilian pepper tree Schinus terebinthifolia and the spiderwort Tradescantia fluminensis are being targeted, along with the Old-World trees Tamarix ramosissima and T. chinensis. The potential biocontrol agents are described and ranked for the two trees according to what has been discovered elsewhere, while the agent already released against T. fluminensis is rated (as poor), and other potential agents are considered. The addition of molecular techniques, climate matching and remote sensing in transfer projects can increase the chance of successful biocontrol and the inclusion of these techniques in the three new programmes is discussed. Transfer projects are a cost-effective and pragmatic way to pick winning biocontrol programmes.
- Full Text:
- Date Issued: 2021
- «
- ‹
- 1
- ›
- »